LiHCH

Application and Description

LiHCH is for use in flexible or stationary applications under low mechanical stress with free movement without any tensile stress, loads or forced movements in dry, moist and wet conditions. Commonly used as connecting cable for signal, measuring, control, call-announcing and two-way intercom systems, clock installations, electronic weighing machines and electrical apparatus for office use. The halogen-free thermoplastic jacket is flame retardant and will give off no corrosive or toxic gases in the case of fire. Commonly installed in public buildings, laboratories, trading and transportation centers. The tinned copper braid shield offers interference-free signal and data transfers. Not permitted for outdoor use.

Standard and Approval

Cable Construction

- Plain copper conductor
- Stranded to DIN VDE 0295 cl. 5, IEC 60228 cl.5
- Halogen free core insulation
- Color coded to DIN 47100, but without color repetition
- Plastic foil separator
- 85% tinned copper braid
- Halogen free outer jacket

Technical Characteristics

- Working voltage: 250 volts
- Test voltage: 1200 volts
- Minimum bending radius: 5 x Ø
- Flexing temperature: -5°C to +70°C
- Static temperature: -40°C to +70°C
- Flame retardant: IEC 60332.1-2
- Mutual Capacitance:
 - Conductor./conductor: 120 nF/km
 - Conductor./shield: 160 nF/km
- Halogen free: DIN EN 50267/IEC 60754
- Smoke density: DIN EN50268/IEC 61034
- Insulation resistance: 20 MΩ x km

Cable Parameter

<table>
<thead>
<tr>
<th>AWG</th>
<th>No. of Cores x Nominal Cross Sectional Area # x mm²</th>
<th>Nominal Overall Diameter mm</th>
<th>Copper Weight kg / km</th>
<th>Cable Weight kg / km</th>
</tr>
</thead>
<tbody>
<tr>
<td>26(18/38)</td>
<td>2x0.14</td>
<td>3.9</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>3x0.14</td>
<td>4.2</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>4x0.14</td>
<td>4.5</td>
<td>12.5</td>
<td>28</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>5x0.14</td>
<td>4.8</td>
<td>13.5</td>
<td>33</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>6x0.14</td>
<td>5.1</td>
<td>15.5</td>
<td>37</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>7x0.14</td>
<td>5.1</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>8x0.14</td>
<td>5.5</td>
<td>19.5</td>
<td>46</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>9x0.14</td>
<td>5.9</td>
<td>23</td>
<td>50</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>10x0.14</td>
<td>6</td>
<td>26</td>
<td>55</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>12x0.14</td>
<td>6.3</td>
<td>30</td>
<td>64</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>16x0.14</td>
<td>7.4</td>
<td>40</td>
<td>84</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>20x0.14</td>
<td>8.2</td>
<td>46</td>
<td>98</td>
</tr>
<tr>
<td>26(18/38)</td>
<td>25x0.14</td>
<td>8.6</td>
<td>55</td>
<td>125</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>2x0.25</td>
<td>4.3</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>3x0.25</td>
<td>4.5</td>
<td>14.7</td>
<td>30</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>4x0.25</td>
<td>4.9</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>5x0.25</td>
<td>5.3</td>
<td>21.2</td>
<td>43</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>6x0.25</td>
<td>5.7</td>
<td>23.5</td>
<td>48</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>7x0.25</td>
<td>5.7</td>
<td>27.5</td>
<td>51</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>8x0.25</td>
<td>6.5</td>
<td>29.8</td>
<td>58</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>9x0.25</td>
<td>7</td>
<td>34.9</td>
<td>64</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>10x0.25</td>
<td>7.2</td>
<td>39.5</td>
<td>70</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>12x0.25</td>
<td>7.4</td>
<td>46</td>
<td>83</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>16x0.25</td>
<td>8.1</td>
<td>55.3</td>
<td>102</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>20x0.25</td>
<td>9</td>
<td>66.1</td>
<td>121</td>
</tr>
<tr>
<td>24(14/34)</td>
<td>25x0.25</td>
<td>10.1</td>
<td>81</td>
<td>145</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>2 X 0.34</td>
<td>4.9</td>
<td>16</td>
<td>31</td>
</tr>
</tbody>
</table>

www.caledonian-cables.co.uk
<table>
<thead>
<tr>
<th>AWG</th>
<th>No. of Cores x Nominal Cross Sectional Area # x (\text{mm}^2)</th>
<th>Nominal Overall Diameter mm</th>
<th>Copper Weight kg / km</th>
<th>Cable Weight kg / km</th>
</tr>
</thead>
<tbody>
<tr>
<td>22(7/30)</td>
<td>3 X 0.34</td>
<td>5.1</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>4 X 0.34</td>
<td>5.5</td>
<td>25</td>
<td>48</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>5 X 0.34</td>
<td>6.2</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>6 X 0.34</td>
<td>6.5</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>7 X 0.34</td>
<td>6.9</td>
<td>37</td>
<td>76</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>8 X 0.34</td>
<td>7.6</td>
<td>46</td>
<td>95</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>10 X 0.34</td>
<td>8.9</td>
<td>62</td>
<td>110</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>12 X 0.34</td>
<td>9.1</td>
<td>68</td>
<td>123</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>14 X 0.34</td>
<td>9.4</td>
<td>82</td>
<td>140</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>16 X 0.34</td>
<td>9.9</td>
<td>95</td>
<td>156</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>18 X 0.34</td>
<td>10.4</td>
<td>107</td>
<td>171</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>21 X 0.34</td>
<td>11.3</td>
<td>122</td>
<td>195</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>25 X 0.34</td>
<td>12.5</td>
<td>141</td>
<td>226</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>30 X 0.34</td>
<td>13.1</td>
<td>162</td>
<td>260</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>34 X 0.34</td>
<td>13.9</td>
<td>177</td>
<td>284</td>
</tr>
<tr>
<td>22(7/30)</td>
<td>40 X 0.34</td>
<td>14.8</td>
<td>202</td>
<td>329</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>2 X 0.5</td>
<td>5.2</td>
<td>22</td>
<td>37</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>3 X 0.5</td>
<td>5.5</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>4 X 0.5</td>
<td>6.1</td>
<td>34</td>
<td>57</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>5 X 0.5</td>
<td>6.9</td>
<td>52</td>
<td>77</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>6 X 0.5</td>
<td>7.1</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>7 X 0.5</td>
<td>7.3</td>
<td>65</td>
<td>92</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>8 X 0.5</td>
<td>8.3</td>
<td>76</td>
<td>113</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>10 X 0.5</td>
<td>9.4</td>
<td>88</td>
<td>135</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>12 X 0.5</td>
<td>9.7</td>
<td>98</td>
<td>147</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>18 X 0.5</td>
<td>11.1</td>
<td>141</td>
<td>210</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>21 X 0.5</td>
<td>12.2</td>
<td>161</td>
<td>241</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>25 X 0.5</td>
<td>13.5</td>
<td>186</td>
<td>284</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>30 X 0.5</td>
<td>14.5</td>
<td>223</td>
<td>339</td>
</tr>
<tr>
<td>20(16/32)</td>
<td>40 X 0.5</td>
<td>16.5</td>
<td>293</td>
<td>443</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>2 X 0.75</td>
<td>5.9</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>3 X 0.75</td>
<td>6.3</td>
<td>37</td>
<td>60</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>4 X 0.75</td>
<td>7.1</td>
<td>58</td>
<td>80</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>5 X 0.75</td>
<td>7.6</td>
<td>68</td>
<td>97</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>7 X 0.75</td>
<td>8.5</td>
<td>88</td>
<td>126</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>10 X 0.75</td>
<td>10.5</td>
<td>122</td>
<td>174</td>
</tr>
<tr>
<td>18(24/32)</td>
<td>12 X 0.75</td>
<td>11.2</td>
<td>137</td>
<td>195</td>
</tr>
<tr>
<td>17(32/32)</td>
<td>2 X 1.0</td>
<td>6.5</td>
<td>43</td>
<td>71</td>
</tr>
<tr>
<td>17(32/32)</td>
<td>3 X 1.0</td>
<td>7.0</td>
<td>57</td>
<td>89</td>
</tr>
<tr>
<td>17(32/32)</td>
<td>4 X 1.0</td>
<td>7.5</td>
<td>68</td>
<td>109</td>
</tr>
<tr>
<td>17(32/32)</td>
<td>5 X 1.0</td>
<td>8.2</td>
<td>79</td>
<td>126</td>
</tr>
<tr>
<td>17(32/32)</td>
<td>7 X 1.0</td>
<td>8.8</td>
<td>118</td>
<td>171</td>
</tr>
<tr>
<td>16(30/30)</td>
<td>2 X 1.5</td>
<td>7.7</td>
<td>58</td>
<td>91</td>
</tr>
<tr>
<td>16(30/30)</td>
<td>3 X 1.5</td>
<td>8.1</td>
<td>74</td>
<td>115</td>
</tr>
<tr>
<td>16(30/30)</td>
<td>4 X 1.5</td>
<td>8.7</td>
<td>107</td>
<td>153</td>
</tr>
<tr>
<td>16(30/30)</td>
<td>5 X 1.5</td>
<td>9.5</td>
<td>129</td>
<td>176</td>
</tr>
<tr>
<td>16(30/30)</td>
<td>7 X 1.5</td>
<td>10.7</td>
<td>164</td>
<td>220</td>
</tr>
</tbody>
</table>