Integrated 9/11/18/20 Cores 0.75mmsq UIC Databus Cables
FRL-UIC-4G10+2G6+1G2.5+2G0.75
FRL-UIC-4G10+2G6+1G2.5+2G1+2G0.75
FRL-UIC-4Q1S+2G0.75/FRL-UIC-4Q1S+2P0.75S

Application
The cables are used as connecting cables to transmit digital signals inside railway rolling stocks.

Construction

For 9 cores UIC databus cables
4 cores: 10 mm² stranded tinned copper conductor with LSZH insulation
Combined Element: 3 cores (with Cu-strand 2 x 6mm², 1 x 2.5mm²) are twisted with a filling element to form a combined element
Core Wrapping: Overlapped plastic-foil(s)
Elements Sheaths: TPE
UIC Data Bus 0.75mm²: Two foam PE or foam skin PE insulated tinned copper stranded conductors are twisted together with two filling elements to form a pair
Core Wrapping: Overlapped plastic-foil(s)
Screen: Tin plated copper braid
Core Wrapping: Overlapped plastic-foil(s)
Stranding: 4 strands are twisted to a core together with 3 cored element, the UIC data bus and two fillers
Core Wrapping: Overlapped plastic-foil(s)
Outer Sheath: Cross-linked oil resistant LSZH compound

For 11 cores UIC databus cables
4 cores: 10 mm² stranded tinned copper conductor with LSZH insulation
Combined Element: 5 cores (with Cu-strand 2 x 6mm², 1 x 2.5mm² and 2 x 1.0 mm²) are twisted with a filling element to form a combined element
Core Wrapping: Overlapped plastic-foil(s)
Elements Sheaths: TPE
UIC Data Bus 0.75mm²: Two foam PE or foam skin PE insulated tinned copper stranded conductors are twisted together with two filling elements to form a pair
Core Wrapping: Overlapped plastic-foil(s)
Screen: Tin plated copper braid
Element Sheaths: TPE
Core Wrapping: Overlapped plastic-foil(s)
Databus Cables

Stranding: 4 strands are twisted to a core together with 5 cored element, the UIC data bus and two fillers
Core Wrapping: Overlapped plastic-foil(s)
Outer Sheath: Cross-linked oil resistant LSZH compound

For 18/20 cores UIC databus cables
Star Quad: Four LSZH insulated 1mm² stranded tinned copper conductors are twisted to form a star quad.
UIC Data Bus 0.75mm²: Two foam PE or foam skin PE insulated tinned copper stranded conductors are twisted together with two filling elements to form a pair
Core Wrapping: Overlapped plastic-foil(s)
Screen: Tin plated copper braid
Element Sheaths: TPE
Core Wrapping: Overlapped plastic-foil(s)
Stranding: 4 star quads are stranded together with 2 or 4 UIC data bus cable and several fillers
Core Wrapping: Overlapped plastic-foil(s)
Screen: Tin plated copper braid.
Outer Sheath: Cross-linked oil resistant LSZH compound

Electrical & Mechanical Properties
Nominal Voltage: 300 V
Max. Temperature: 90 °C
Min. Temperature: -40 °C
Bending Radius: 12 × Overall Diameter

Chemical & Environmental Properties
EN 60684-2
EN 50305; EN 60811-2-1
EN 50305

Fire Performance for Rolling Stock Application
EN 50306-2
DIN 5510-2
BS 6853
NF F 16-101

Fire Performance in General
EN 50265-2-1; IEC 60332-1-2; NF C 32-070 2.1 (C2)
EN 50266-2-4 + EN 50305; IEC 60332-3-24;
NF C 32-070 2.2 (C1); VDE 0472 Teil 804
EN 50268-2; IEC 61034-2; NF C 32-073 ;
NF C 20-902; NF F 16 101; VDE 0472 Teil 816
EN 50267-2-1; IEC 60754-1; NF C 32-074;
NF C 20-454; VDE 0472 Teil 815
EN 50267-2-2/3; IEC 60754-2; NF C 32-074;
NF C 20-453; VDE 0472 Teil 813
EN 50305; NF X 70-100; NF F 63 808; TM1-04; BS6853
NF F 63 808; BS6853; NF F 16 101

Vertical flame propagation for a single insulated wire or cable
Vertical flame spread of vertically mounted bunched wires or cables
Low Smoke Emission
Halogen Free
Low Corrosivity (Acidity & Conductivity)
Low Toxicity
Smoke Index
Caledonian

FRL-UIC-4G10+2G6+1G2.5+2G0.75

<table>
<thead>
<tr>
<th>Nominal Cross-Sectional Area</th>
<th>Number & Nominal Diameter of Strands</th>
<th>Nominal Sheath Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Max. Conductor Resistance</th>
<th>Impedance</th>
<th>Max. Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm² No/mm</td>
<td>mm</td>
<td>mm</td>
<td>kg/km</td>
<td>20 °C @0.75-3MHz</td>
<td>@1MHz</td>
<td>@1.5MHz @2MHz @3MHz</td>
</tr>
<tr>
<td>0.75</td>
<td>19/0.22</td>
<td>1.8</td>
<td>25</td>
<td>917</td>
<td>26.7</td>
<td>120+/-12</td>
<td>10 13 14 18</td>
</tr>
<tr>
<td>10</td>
<td>80/0.4</td>
<td></td>
<td></td>
<td></td>
<td>1.95</td>
<td>-</td>
<td>- - - -</td>
</tr>
<tr>
<td>6</td>
<td>84/0.3</td>
<td></td>
<td></td>
<td></td>
<td>3.39</td>
<td>-</td>
<td>- - - -</td>
</tr>
<tr>
<td>2.5</td>
<td>37/0.29</td>
<td></td>
<td></td>
<td></td>
<td>8.21</td>
<td>-</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

FRL-UIC-4G10+2G6+1G2.5+2G1+2G0.75

<table>
<thead>
<tr>
<th>Nominal Cross-Sectional Area</th>
<th>Number & Nominal Diameter of Strands</th>
<th>Nominal Sheath Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Max. Conductor Resistance</th>
<th>Impedance</th>
<th>Max. Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm² No/mm</td>
<td>mm</td>
<td>mm</td>
<td>kg/km</td>
<td>20 °C @0.75-3MHz</td>
<td>@1MHz</td>
<td>@1.5MHz @2MHz @3MHz</td>
</tr>
<tr>
<td>0.75</td>
<td>19/0.22</td>
<td>1.8</td>
<td>25</td>
<td>969</td>
<td>26.7</td>
<td>120+/-12</td>
<td>10 13 14 18</td>
</tr>
<tr>
<td>10</td>
<td>80/0.4</td>
<td></td>
<td></td>
<td></td>
<td>1.95</td>
<td>-</td>
<td>- - - -</td>
</tr>
<tr>
<td>6</td>
<td>84/0.3</td>
<td></td>
<td></td>
<td></td>
<td>3.39</td>
<td>-</td>
<td>- - - -</td>
</tr>
<tr>
<td>2.5</td>
<td>37/0.29</td>
<td></td>
<td></td>
<td></td>
<td>8.21</td>
<td>-</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

FRL-UIC-4Q1S+2G0.75

<table>
<thead>
<tr>
<th>Nominal Cross-Sectional Area</th>
<th>Number & Nominal Diameter of Strands</th>
<th>Nominal Sheath Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Max. Conductor Resistance</th>
<th>Impedance</th>
<th>Max. Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm² No/mm</td>
<td>mm</td>
<td>mm</td>
<td>kg/km</td>
<td>20 °C @0.75-3MHz</td>
<td>@1MHz</td>
<td>@1.5MHz @2MHz @3MHz</td>
</tr>
<tr>
<td>0.75</td>
<td>19/0.22</td>
<td>1.8</td>
<td>18.5</td>
<td>498</td>
<td>26.7</td>
<td>120+/-12</td>
<td>10 13 14 18</td>
</tr>
<tr>
<td>1</td>
<td>19/0.25</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>-</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

FRL-UIC-4Q1S+2P0.75S

<table>
<thead>
<tr>
<th>Nominal Cross-Sectional Area</th>
<th>Number & Nominal Diameter of Strands</th>
<th>Nominal Sheath Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Max. Conductor Resistance</th>
<th>Impedance</th>
<th>Max. Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm² No/mm</td>
<td>mm</td>
<td>mm</td>
<td>kg/km</td>
<td>20 °C @0.75-3MHz</td>
<td>@1MHz</td>
<td>@1.5MHz @2MHz @3MHz</td>
</tr>
<tr>
<td>0.75</td>
<td>19/0.22</td>
<td>1.5</td>
<td>23</td>
<td>530</td>
<td>26.7</td>
<td>120+/-12</td>
<td>10 13 14 18</td>
</tr>
<tr>
<td>1</td>
<td>19/0.25</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>-</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

Notes:
- **Corona Resistant:**
- **Highly Flexible:**
- **UV Resistant:**
- **Ozone Resistant:**
- **Abrasion Resistant:**
- **Cold Resistant:**
- **Resistance To Soldering Heat:**
- **Acid & Alkaline Resistant:**
- **Flame Retardant:**
- **Fuel Oil Resistant:**
- **Mineral Oil Resistant:**
- **Zero Halogen:**
- **Zero Fire Retardant:**
- **Low Smoke Emission:**
- **Low Corrosivity:**
- **Low Toxicity:**
- **Low Corrosivity:**
- **Low Smoke Emission:**
- **Low Fire Retardant:**
- **Resistance To Soldering Heat:**
- **Acid & Alkaline Resistant:**
- **Flame Retardant:**
- **Fuel Oil Resistant:**
- **Mineral Oil Resistant:**
- **Zero Halogen:**
- **Zero Fire Retardant:**
- **Low Smoke Emission:**
- **Low Corrosivity:**
- **Low Toxicity:**
- **Low Corrosivity:**
- **Low Smoke Emission:**
- **Low Fire Retardant:**
- **Resistance To Soldering Heat:**
- **Acid & Alkaline Resistant:**

IRM 903 Fuel Oil Resistant
IRM 902 Mineral Oil Resistant
Zero Halogen
Zero Fire Retardant
Low Smoke Emission
Low Corrosivity
Low Toxicity
Low Smoke Emission
Low Fire Retardant
Resistance To Soldering Heat
Acid & Alkaline Resistant

82