Type SHD-GC Three-Conductor

Round Portable Power Cable, TPU Jacket 25kV

» Applications ..

These heavy duty cables are designed for heavy mobile equipment such as drag lines, shovels, dredges, drills and for power feeders.

» Standards ..

- ICEA S-75-381/NEMA WC 58
- ASTM B 172
- ASTM B 33
- CAN/CSA C22.2 No. 96

» Construction ...}

Conductors:
Stranded annealed tinned copper conductor.

Conductor Shield:
Conducting layer.

Insulation:
Ethylene Propylene Rubber (EPR).

Insulation Shield:
Conducting tape + Tinned copper/textile braid.
Ground Check Conductor:
Tinned copper conductor with a yellow polypropylene insulation.

Grounding Conductor:
Tinned copper conductor.

Jacket:
Thermoplastic Polyurethane (TPU) Jacket, black.

Options
- Other jacket materials such as CPE/CSP/PCP/NBR/PVC are available upon request.
- Two-layer jacket with reinforcing fibre between the two layers can be offered as an option.

Mechanical and Thermal Properties
Minimum Bending Radius: 8×OD
Maximum Conductor Operating Temperature: +90°C

Dimensions and Weight

<table>
<thead>
<tr>
<th>Construction</th>
<th>No. of Strands</th>
<th>Grounding Conductor Size</th>
<th>Ground Check Conductor Size</th>
<th>Nominal Insulation Thickness</th>
<th>Nominal Jacket Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Ampacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cores×AWG/kcmil</td>
<td>-</td>
<td>AWG/kcmil</td>
<td>AWG/kcmil</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>3×1</td>
<td>259</td>
<td>5</td>
<td>8</td>
<td>0.260</td>
<td>6.6</td>
<td>0.265</td>
<td>6.7</td>
<td>2.95</td>
</tr>
<tr>
<td>3×1/0</td>
<td>266</td>
<td>4</td>
<td>8</td>
<td>0.260</td>
<td>6.6</td>
<td>0.265</td>
<td>6.7</td>
<td>3.05</td>
</tr>
<tr>
<td>3×2/0</td>
<td>323</td>
<td>3</td>
<td>8</td>
<td>0.260</td>
<td>6.6</td>
<td>0.280</td>
<td>7.1</td>
<td>3.20</td>
</tr>
<tr>
<td>3×3/0</td>
<td>418</td>
<td>2</td>
<td>8</td>
<td>0.260</td>
<td>6.6</td>
<td>0.280</td>
<td>7.1</td>
<td>3.33</td>
</tr>
<tr>
<td>3×4/0</td>
<td>532</td>
<td>1</td>
<td>8</td>
<td>0.260</td>
<td>6.6</td>
<td>0.295</td>
<td>7.5</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Ampacity-Based on a conductor temperature of 90°C and an ambient air temperature of 40°C, per ICEA S-75-381.