Type SHD-CGC Three-Conductor
Round Portable Power Cable 2kV

Applications

These heavy duty cables are designed for applications such as longwall shearer s, continuous miners, loaders, drills, conveyors, pumps, and other mobile equipment requiring grounding conductors, where a ground check conductor, and metallic shielding are required.

Standards

ICEA S-75-381/NEMA WC 58
ASTM B 172
ASTM B 33
CAN/CSA C22.2 No. 96

Construction

Conductors:
Stranded annealed tinned copper conductor.

Insulation:
Ethylene Propylene Rubber (EPR).

Insulation Shield:
Tinned copper/textile braid.

Ground Check Conductor:
Tinned copper with a yellow insulation, located in the center of the cable.
Grounding Conductor:
Tinned copper conductor.

Jacket:
Reinforced extra-heavy-duty Chlorinated Polyethylene (CPE), black.

» Options ..

• Other jacket materials such as CSP/PCP/NBR/PVC are available upon request.
• Two-layer jacket with reinforcing fibre between the two layers can be offered as an option.

» Mechanical and Thermal Properties ...

Minimum Bending Radius: 6×OD
Maximum Conductor Operating Temperature: +90°C

» Dimensions and Weight ..

<table>
<thead>
<tr>
<th>Construction</th>
<th>No. of Strands</th>
<th>Grounding Conductor Size</th>
<th>Ground Check Conductor Size</th>
<th>Nominal Insulation Thickness</th>
<th>Nominal Jacket Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Ampacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cores×AWG/ kcmil</td>
<td>AWG/ kcmil</td>
<td>AWG/ kcmil</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>3×2/0</td>
<td>342</td>
<td>5</td>
<td>16</td>
<td>0.08</td>
<td>2.0</td>
<td>0.205</td>
<td>5.2</td>
<td>2.09</td>
</tr>
<tr>
<td>3×3/0</td>
<td>418</td>
<td>4</td>
<td>16</td>
<td>0.08</td>
<td>2.0</td>
<td>0.205</td>
<td>5.2</td>
<td>2.21</td>
</tr>
<tr>
<td>3×4/0</td>
<td>532</td>
<td>3</td>
<td>16</td>
<td>0.08</td>
<td>2.0</td>
<td>0.220</td>
<td>5.6</td>
<td>2.36</td>
</tr>
<tr>
<td>3×350</td>
<td>888</td>
<td>1</td>
<td>16</td>
<td>0.95</td>
<td>2.4</td>
<td>0.250</td>
<td>6.3</td>
<td>2.81</td>
</tr>
</tbody>
</table>

Ampacity-Based on a conductor temperature of 90°C and an ambient air temperature of 40°C, per ICEA S-75-381.