Mine Power Feeder Cables

Type MP-GC Three-Conductor
Mine Power Feeder Cable, PVC Jacket, 8kV

» Applications ..

These cables are designed for connections between units of mine distribution systems, suitable for installed in duct, conduit or open air and for direct burial in wet and dry locations.

» Standards ..

ICEA S-75-381/NEMA WC 58
ASTM B-8
CAN/CSA-C22.2 No.96

» Construction ..

Conductors:
Stranded annealed bare copper conductor.

Conductor Shield:
Conducting layer.

Insulation:
Cross-Linked Polyethylene (XLPE).

Insulation Shield:
Conducting layer + copper tape.

Ground Check Conductor:
Copper conductor with a yellow polypropylene insulation.
Grounding Conductor:
Tinned copper conductor.

Jacket:
Polyvinyl Chloride (PVC), black.

Options
- Other jacket materials such as CSP/PCP/NBR/CPE/TPU are available upon request.

Mechanical and Thermal Properties
Minimum Bending Radius: $12 \times \text{OD}$
Maximum Conductor Operating Temperature: $+90^\circ \text{C}$

Dimensions and Weight

<table>
<thead>
<tr>
<th>Construction</th>
<th>No. of Strands</th>
<th>Grounding Conductor Size</th>
<th>Ground Check Conductor Size</th>
<th>Nominal Insulation Thickness</th>
<th>Nominal Jacket Thickness</th>
<th>Nominal Overall Diameter</th>
<th>Nominal Weight</th>
<th>Ampacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cores×AWG/kcmil</td>
<td>AWG/kcmil</td>
<td>AWG/kcmil</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>3×4</td>
<td>-</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.11</td>
<td>2.8</td>
</tr>
<tr>
<td>3×2</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.11</td>
<td>2.8</td>
</tr>
<tr>
<td>3×1</td>
<td>19</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.11</td>
<td>2.8</td>
</tr>
<tr>
<td>3×1/0</td>
<td>19</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.11</td>
<td>2.8</td>
</tr>
<tr>
<td>3×2/0</td>
<td>19</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.14</td>
<td>3.6</td>
</tr>
<tr>
<td>3×3/0</td>
<td>19</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.14</td>
<td>3.6</td>
</tr>
<tr>
<td>3×4/0</td>
<td>19</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.14</td>
<td>3.6</td>
</tr>
<tr>
<td>3×250</td>
<td>37</td>
<td>1/0</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.14</td>
<td>3.6</td>
</tr>
<tr>
<td>3×350</td>
<td>37</td>
<td>2/0</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.14</td>
<td>3.6</td>
</tr>
<tr>
<td>3×500</td>
<td>37</td>
<td>4/0</td>
<td>8</td>
<td>8</td>
<td>0.115</td>
<td>2.9</td>
<td>0.14</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Ampacity-Based on a conductor temperature of 90°C and an ambient air temperature of 40°C, per ICEA S-75-381.