Type G-GC Three-Conductor Flat
Portable Power Cable 2kV

» Applications ...

These flat parallel cables are designed for use on AC mining equipment, such as A.C. shuttle cars, drills, cutting and loading machines.

» Standards ..

ICEA S-75-381/NEMA WC 58
ASTM B 172
ASTM B 33
CAN/CSA-C22.2 No.96

» Construction ..

Conductors:
Stranded annealed tinned copper conductor.

Insulation:
Ethylene Propylene Rubber (EPR).

Ground Check Conductor:
Tinned copper conductor with a yellow insulation.

Grounding Conductor:
Tinned copper conductor with an optional green outer covering.

Reinforcement:
Synthetic yarn.
Portable Power Cables

Jacket:
Heavy-duty/extra-heavy-duty Chlorinated Polyethylene (CPE), black. (Cables having a nominal outside diameter of more than 2.0 inches require extra-heavy-duty jackets.)

Options
- Other jacket materials such as CSP/PCP/NBR/PVC are available upon request.
- Two-layer jacket with reinforcing fibre between the two layers can be offered as an option.

Mechanical and Thermal Properties
- Minimum Bending Radius: 6×OD
- Maximum Conductor Operating Temperature: +90°C

Dimensions and Weight

<table>
<thead>
<tr>
<th>Construction</th>
<th>No. of Strands</th>
<th>Grounding Conductor Size</th>
<th>Ground Check Conductor Size</th>
<th>Nominal Insulation Thickness</th>
<th>Nominal Jacket Thickness</th>
<th>Nominal Overall Diameter Height×Width</th>
<th>Nominal Weight</th>
<th>Ampacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cores×AWG/ kcmil</td>
<td>AWG/kcmil</td>
<td>AWG/kcmil</td>
<td>inch</td>
<td>millimeter</td>
<td>inch</td>
<td>millimeter</td>
<td>inch</td>
</tr>
<tr>
<td>3×6</td>
<td>133</td>
<td>8</td>
<td>8</td>
<td>0.06</td>
<td>1.5</td>
<td>0.095</td>
<td>2.4</td>
<td>0.66×1.67</td>
</tr>
<tr>
<td>3×4</td>
<td>259</td>
<td>7</td>
<td>8</td>
<td>0.06</td>
<td>1.5</td>
<td>0.095</td>
<td>2.4</td>
<td>0.72×1.87</td>
</tr>
<tr>
<td>3×3</td>
<td>259</td>
<td>6</td>
<td>6</td>
<td>0.06</td>
<td>1.5</td>
<td>0.110</td>
<td>2.8</td>
<td>0.78×2.08</td>
</tr>
<tr>
<td>3×2</td>
<td>259</td>
<td>5</td>
<td>6</td>
<td>0.06</td>
<td>1.5</td>
<td>0.110</td>
<td>2.8</td>
<td>0.85×2.23</td>
</tr>
<tr>
<td>3×1</td>
<td>259</td>
<td>4</td>
<td>6</td>
<td>0.08</td>
<td>2.0</td>
<td>0.125</td>
<td>3.2</td>
<td>0.96×2.50</td>
</tr>
<tr>
<td>3×1/0</td>
<td>259</td>
<td>3</td>
<td>5</td>
<td>0.08</td>
<td>2.0</td>
<td>0.140</td>
<td>3.6</td>
<td>1.01×2.67</td>
</tr>
<tr>
<td>3×2/0</td>
<td>329</td>
<td>2</td>
<td>5</td>
<td>0.08</td>
<td>2.0</td>
<td>0.140</td>
<td>3.6</td>
<td>1.09×2.86</td>
</tr>
<tr>
<td>3×3/0</td>
<td>413</td>
<td>1</td>
<td>5</td>
<td>0.08</td>
<td>2.0</td>
<td>0.155</td>
<td>3.9</td>
<td>1.18×3.12</td>
</tr>
<tr>
<td>3×4/0</td>
<td>532</td>
<td>1/0</td>
<td>5</td>
<td>0.08</td>
<td>2.0</td>
<td>0.155</td>
<td>3.9</td>
<td>1.24×3.30</td>
</tr>
</tbody>
</table>

Ampacity-Based on a conductor temperature of 90°C and an ambient air temperature of 40°C, per ICEA S-75-381.