Caledonian

FIREFLEX
Fire Resistant Coaxial Cables
TABLE OF CONTENTS

Fire Resistant Coaxial Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Resistant RG59 B/U Coaxial Cables</td>
<td>25</td>
</tr>
<tr>
<td>Fire Resistant RG6 A/U Coaxial Cables</td>
<td>28</td>
</tr>
<tr>
<td>Fire Resistant RG6 QUAD Coaxial Cables</td>
<td>31</td>
</tr>
<tr>
<td>Fire Resistant RG11 A/U Coaxial Cables</td>
<td>34</td>
</tr>
</tbody>
</table>
FIRE RESISTANT CABLES

In all fire disasters, fire smoke, heat and toxic fumes are the main obstacles to safe evacuation of a building or area. A major contribution towards overcoming these hazards is the use of fire resistant and non-halogenated cables.

Caledonian fire resistant cables, branded under Fireflex, provide the following features:

- Fire resistance
- Long-term circuit integrity in a fire
- Minimum smoke emission
- Flame retardance
- Reduced fire propagation
- Zero halogen

Fireflex cables are mainly used in the wiring of:

- Fire resistant safety circuits
- Public address and emergency voice communication systems in high-rise building
- Control and instrumentation services in industrial, commercial and residential complexes
- High-temperature installation conditions

CABLE CONSTRUCTION

Fireflex cables have been developed to maintain circuit integrity in a fire and to ensure maximum safe evacuation of personnel with no detrimental effects like toxic gases or smoke.

Fireflex cables are constructed in the following typical design:

- Solid/stranded annealed copper conductor
- Glass mica tape/silicone rubber as flame barrier
- XLPE/silicone rubber as insulation
- LSZH/flame retardant PVC as sheath

Fireflex cables are offered in either single core, multicore or multi-pair constructions. The insulation material can be elastomeric(EPR, SR), thermosetting (XLPE, LSZH) or thermoplastic (EVA, PVC) to meet different stringent environment requirement. The cables may be armoured or braided, with or without metallic screen, depending on different applications. Caledonian can provide PE, PU, PVC, SHF1, SHF2 or LSZH materials as outer sheath for different applications.

INTERNATIONAL STANDARD COMPLIANCE

The fire resistant cables manufactured by caledonian comply with either one or combination of the following standards.

What is Fire Resistance

In a fire, the electrical systems must be able to keep functioning for a suitable length of time. This is particularly important for safety equipments used in emergency ventilation, emergency lighting, and
alarm systems, together with the power supply to transport facilities and elevators.

Fire resistance means that the cable or the cable system where the cable is installed is capable to continue to operate even in case of fire for a specific period of time from 30 to 180 minutes.

Circuit integrity (Insulation integrity) refers to tests for the cables only. This is denoted by FE180 in some European countries such as Germany and Belgium. Functional integrity refers to tests on cables and systems (ladders, cable tray, clamps etc). It is denoted by E30, E60, E90 indicating the cable resistance for 30, 60 and 90 minutes according to a specific test and different installation systems.

The functional integrity and the circuit integrity are not related in any way as regards their content. The former is a system test and the circuit (insulation) integrity is an individual cable test. The integrated system test for functional integrity is regarded as a technical benchmark in the cable industry.

DESIGN STANDARD IN ACCORDANCE WITH DIFFERENT STANDARDS

This standard apply to cables with thermosetting insulation of rated voltage 300/500V which conform to the performance requirements for cables required to maintain limited circuit integrity under those fire conditions of BS 6387 specified as B, W and X. Those cables are intended for use in fire alarm and emergency lighting applications.

The cables are suitable for operation at a maximum sustained conductor temperature of 70°C although the insulation is suitable for operation at higher temperatures. Use at a temperature not exceeding 90°C is allowed for terminations within an enclosure providing the cable conductor temperature outside the enclosure does not exceed 70°C.

The standards apply to cables with a rated voltage of 300/500V, and

- two, three and four-core circular cables with uninsulated circuit protective conductor
- 7,12 or 19 core with an uninsulated drain wire
- 1,2,5,10,20 pairs having a collective metallic layer and drain wire.

They contain a metallic layer which provides electrostatic screening.

BS 7846:2009 – Electric cables. Thermosetting insulated, armoured, fire resistant cables of rated voltage 600/1000V, having low emission to smoke and corrosive gases when affected by fire.

Some circuits requiring an equivalent level of fire resistance need to be designed for larger cables than are found in BS 7629-1. Such circuits may be for the main emergency supply, fire fighting lifts, sprinkler system and water pumps, smoke extraction fans, fire shutters or smoke dampers. These larger cables are standardized in BS 7846 which covers the size range and LSZH performance under BS 6724. Through the use of mica tape to supplement the insulation, the cables can pass BS 6387 CWZ and additionally the ‘standard’ or ‘enhanced’ grade as specified in BS 5839-1.

The cables are intended for use in fixed installations in industrial areas, buildings and similar
applications, where maintenance of power supply during a fire is essential and where the evolution of smoke and corrosive gases must be kept to a minimum.

The circuit integrity performance under fire conditions is assessed on the basis of various tests where resistance to fire, resistance to fire with water, and resistance to fire with mechanical shock are assessed separately or in combination. The cables are designated by the following categories:

Category F1- resistance to fire alone
Category F2- resistance to fire, resistance to fire with water, resistance to fire with mechanical shock, assessed separately.
Category F3- resistance to fire with mechanical shock and water assessed in combination.
The cables are wire armoured and
-two, three, four and five-core stranded copper conductor
-multicore auxiliary stranded copper conductor.

BS EN 60702 – Mineral insulated cables with a rated voltage not exceeding 750V.

BS EN 60702-1:2002 applies to mineral insulated general wiring cables with copper or copper alloy sheath and copper conductors and with rated voltage of 500V (light duty grade) and 750V (heavy duty grade). Provision is made for a corrosion resistant extruded outer covering over the copper sheath, when required. The standard sets out requirements for the optional outer covering, which includes requirements for halogen free covering and the thickness of the covering. The standard includes routine tests including a spark test on the outer covering. Sample tests includes such as flame retardance, emission of acidic and corrosive gases and smoke emission. Type tests such as fire resistance are included.

Mineral insulated cables are extremely resistant but rigid and a particular care has to be paid during installation to prevent moisture absorption by the mineral oxide.

500V grade cable includes the following conductor sizes:
- single and twin conductor cables up to 4mmsq csa
- three, four and seven conductor cables up to 2.5mmsq csa

750V grade cable provides for:
- single conductor cables up to 400mmsq csa
- two, three and four conductor cables up to 25mmsq csa
- seven conductor cables up to 4mmsq csa
- twelve conductor cables up to 2.5mmsq csa
- nineteen conductor cables up to 1.5mmsq csa
The fire related properties by the cable standards are summarised in the following table:

<table>
<thead>
<tr>
<th>Cable Standard and type</th>
<th>Fire related properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 7629</td>
<td>Tests on electric cables under fire conditions - single core cable. Measurement of smoke density of electric cables burning under defined conditions. Fire burning under defined conditions. Performance requirements for cables required to maintain integrity under fire conditions. Gases evolved during combustion of electric cables.</td>
</tr>
<tr>
<td>BS 846</td>
<td>Tests on electric cables under fire conditions - single core cable. Tests on electric cables under fire conditions - bunched cables. Measurement of smoke density of electric cables burning under defined conditions. Gases evolved during combustion of electric cables. Performance requirements for cables required to maintain integrity under fire conditions.</td>
</tr>
<tr>
<td>BS EN 60702</td>
<td>Tests on electric cables under fire conditions - single core cable. Measurement of smoke density of electric cables burning under defined conditions. Gases evolved during combustion of electric cables. Performance requirements for cables required to maintain integrity under fire conditions.</td>
</tr>
</tbody>
</table>
CODE OF PRACTICE IN ACCORDANCE WITH DIFFERENT STANDARDS

This standard provides recommendations for the planning, design, installation, commissioning and maintenance of fire detection and fire alarm systems in and around building, other than dwellings. It recommends the use of fire resisting cables for mains power supply circuit and all critical signal path in such systems. It does not recommend whether or not a fire alarm system should be installed in any given premises. Cables are described in clause 26. This standard introduces two different levels of resistance of cables during a fire (standard and enhanced grade).

BS 5839-6:2004 - Fire detection and fire alarm systems for buildings. Code of practice for the design, installation and maintenance of fire detection and fire alarm systems in dwellings.

This code of practice covers every type of fire detection ‘system’, from a simple self-contained battery smoke alarm right through to major hard wired 24V systems.

BS 5839-6 also covers almost every conceivable type of premises, including:
- Bungalows
- Multi-storey houses
- Individual flats
- Individual maisonettes
- Mobile homes
- Individual sheltered accommodation
- Houses in multiple occupation (HMOs)
- NHS housing in the community

BS 5839-6 is primarily concerned with saving lives and reducing injuries. BS 5839-6 grades fire detection systems from Grade F up to Grade A. Generally speaking, the greater the fire risk and the more demanding the application, the more comprehensive the system needs to be.

BS 5839-8:2008 - Fire detection and fire alarm systems for buildings. Code of practice for the design, installation, commissioning and maintenance of voice alarm systems.

Many people believe they can simply use their PA system to provide a voice message in the event of an emergency like a fire. Unfortunately PA systems, whilst very good for providing music and messages, are not guaranteed to work when there is an emergency. This is where the British Standard BS 5839 - 8:1998 on Voice Alarm comes into use, as it clearly defines the requirements of
a true VA system. A true VA system is a highly secure public address system which has the following features;

- All internal and external circuits are monitored for faults
- A minimum battery back up of 24 hours standby and 30 minutes alarm.
- A monitored secure link to a fire alarm panel
- A number of pre-recorded emergency messages
- Incorporates an emergency ‘firemans’ microphone

BS 5839-9:2011 - Fire detection and fire alarm systems for buildings. Code of practice for the design, installation, commissioning and maintenance of emergency voice communication systems.

An emergency voice communication systems (EVCS) is a fixed, secure, bi-directional, full duplex voice communication system to assist fire fighters in an emergency in high rise buildings or large sites where radio communication may not work, and covers the operation of both fire telephones and disabled refuge systems. Where both systems are fitted to a building, Bs5839-9 specifies these should be a single system.

The purpose of emergency lighting, anti-panic lighting and standby lighting is to ensure that the main fire exit routes from a building or open and high risk areas are sufficiently lit in the case of a mains failure, in order to allow persons to safely evacuate the areas or premises. Manual fire alarm points, first aid points, fire fighting and safety equipment should also be clearly lit, so that it can be clearly identified.

Cables installed for these systems have to withstand to fire for at least 60 minutes according to BS EN 50200.

BS 8519:2010- Selection and installation of fire resistant power and control cable systems for life safety and firefighting applications. Code of practice.

BS 8519 was introduced specifically to apply only to large and complex buildings and has been widely welcomed within the industry. The new standard offers guidance for the selection of fire resistant power and control cables in life safety and firefighting systems such as smoke barriers, sprinkler systems, fire fighting and evacuation lift supplies. Consequently, BS 8519 should increase the protection of emergency and fire personnel, as well as evacuees who may be inside a large or complex building when fire breaks out.

CIRCUIT (INSULATION) INTEGRITY IN ACCORDANCE WITH DIFFERENT STANDARDS

Circuit (insulation) Integrity in accordance with IEC 60331

IEC 60331 specifies tests for electric cable for circuit integrity under fire conditions. It is divided in following parts that describe the test modes, the conditions, and the equipment to use. The test was originally carried out only in fire alone for a period of 180 minutes at a temperature of 750°C.
To better simulate the real fire conditions, with mechanical stresses due to the fall of materials and with the presence of water, the testing conditions have been modified by changing the duration, increasing the temperature of the flame and by adding mechanical stresses and water spray.

IEC 60331-1 ed 1.0 (2009-05)- Part 1: Test method for fire with shock at a temperature of at least 830°C for cables of rated voltage up to and including 0.6/1KV and with an overall diameter exceeding 20mm.

IEC 60331-2 ed 1.0 (2009-05)- Part 2: Test method for fire with shock at a temperature of at least 830°C for cables of rated voltage up to and including 0.6/1KV and with an overall diameter not exceeding 20mm.

IEC 60331-3 ed 1.0 (2009-05)- Part 3: Test method for fire with shock at a temperature of at least 830°C for cables of rated voltage up to and including 0.6/1KV tested in a metal enclosure.

IEC 60331-11 ed1.01 Consol. with am1 (2009-07) – Part 11: Apparatus – Fire alone at a flame temperature of at least 750°C.

IEC 60331-12 ed1.01 Consol. with am1 (2009-07) – Part 12: Apparatus – Fire with shock at a flame temperature of at least 830°C.

IEC 60331-21 ed1.0 (1999-04) – Part 21: Procedures and requirements – Cables of rated voltage up to and including 0.6/1KV.

IEC 60331-31 ed1.0 (1999-04) – Part 31: Tests for electric cables for fire conditions and shock-Circuit integrity. Procedures and requirements for fire with shock – Cables of rated voltage up to and including 0.6/1KV.

IEC 60331-21/60331-23 A sample of the cable length of 1200mm sustained by two metal rings is mounted horizontally in a special ventilated cabin. During the test, to the wire cores of cable a voltage of the nominal value is applied (for telecommunication cables equal to 110 V), thereby creating a closed electric circuit. The sample is subjected to an action of linear gas burner with a length of 500mm and the flame temperature equal to 750°C till 800°C. The time of the fire is 180 minutes. Result of the test is considered positive if at that time will not be considered a short circuit in the circuit being researched.

IEC 60331-25 details a method to assess the circuit integrity of optical fiber cables. The standard specifies a ribbon burner and the recommended flame temperature is 750°C. The optical power meter is zeroed and the changes in attenuation during the 180 minutes burner application period are monitored. The maximum change in attenuation (a change from zero) is recorded during the burner application period. In the 15 minutes period after the flame application, a maximum attenuation is also recorded. Result of the test is considered positive if at that time will not be considered a short circuit.
circuit in the circuit being tested.

IEC 60331-31 applies to the cables with a diameter greater than 20mm, and introduces the standards and procedures for testing of cables exposed to fire and mechanical shock (equipment according to 60331-12). The test sample provides cable fragment length at least 1500mm. Bent wire on the U-shaped with a radius equal to the smallest permissible by the manufacturer, is mounted on a metal assay ladder. During the study, through all the cable wires is passed current with rated voltage and these cables are subjected to fire during 120min, where fire source is a gas burner set in conformity with standards, as well the mechanical shock of the 5 minutes interval. Result of the test is considered positive if at that time will not be considered a short circuit in the circuit being tested.

Circuit (insulation) Integrity in accordance with BS 6387:1994

BS 6387:1994 specifies the requirements for cables required to maintain circuit integrity under fire conditions. This is the first standard to include also mechanical stress and water stress in the fire resistance test of electric cables. BS 6387 standard is still used in many countries. Being different from EN 50200, Its limits is to require three different tests on three different cable samples.

The fire resistant cables are categorized by a letter symbol (e.g. A) or series of symbols (e.g. CWZ) according to the requirements for fire resistance characteristics which they meet, the test temperature selected and the duration of the test for resistance to fire alone in according to BS 6387 as below:

<table>
<thead>
<tr>
<th>Test</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Resistance to fire alone</td>
<td></td>
</tr>
<tr>
<td>650°C for 3 hours</td>
<td>A</td>
</tr>
<tr>
<td>750°C for 3 hours</td>
<td>B</td>
</tr>
<tr>
<td>950°C for 3 hours</td>
<td>C</td>
</tr>
<tr>
<td>950°C for 20 minutes (short duration)</td>
<td>S</td>
</tr>
</tbody>
</table>

| **(2) Resistance to fire with water** | |
| Exposed to fire @ 650°C for 15 mins then exposed to fire @ 650°C with water for another 15 mins. | W |

(3) Resistance to fire with mechanical shock	
Exposed to fire @ 650°C for 15 mins then exposed to fire @ 650°C with mechanical shock for 15 mins.	X
Exposed to fire @ 750°C for 15 mins then exposed to fire @ 750°C with mechanical shock for 15 mins.	Y
Exposed to fire @ 950°C for 15 mins then exposed to fire @ 950°C with mechanical shock for 15 mins	Z
The most common test comprises the three categories C, W and Z.

– Category C is a fire resistance test in which the cable is exposed to a fire at a temperature of 950°C with a duration of 3 hours, under realistic conditions.
– Category W is a fire and water resistance test in which the cable is exposed to a fire at a temperature of 650°C and then for another 15 minutes to fire with water that is poured over the area around the cable. This simulates the effect of water from a sprinkler that is activated during the fire.
- Category Z is a fire and mechanical stroke test in which the cable is installed in a defined manner on a vertical wall with three cable clips and subject to heat from a gas burner; mechanical shock is simulated by striking the cable with a hammer. The cable is exposed to a fire at a temperature of 950°C and then for another 15 minutes to fire with mechanical shock at a frequency of 2 strikes per minute.

During testing in all three categories, the cable is connected to a 400V three-phase power supply protected with a 3 A fuse on each phase. The test is regarded as successful if none of the fuses blow during the test period.

Circuit (insulation) integrity in accordance with EN 50200:2006

EN 50200:2006 defines method of test for resistance to fire of unprotected small cables (up to 20mm) for use in emergency circuits. In the adapted chamber is mounted a cable sample with a length of 1200mm, to which wire cores during the test a nominal value voltage is applied, creating thereby a closed circuit. During the test the cable is subjected to actions of the fire at conventional temperature 842°C and mechanical stroke for a specified period of time. The measured time of proper functioning of the cable corresponds to the so-called cable fire resistance class PH, which is also mentioned in the standard PN-B-02851-1 - Fire resistance tests of elements of buildings (Test method for thin wires with an outside diameter not greater than 20mm).

The test duration is expressed in minutes and is recorded in the following classification:

<table>
<thead>
<tr>
<th>Test</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame exposure for 15 minutes</td>
<td>PH 15</td>
</tr>
<tr>
<td>Flame exposure for 30 minutes</td>
<td>PH 30</td>
</tr>
<tr>
<td>Flame exposure for 60 minutes</td>
<td>PH 60</td>
</tr>
<tr>
<td>Flame exposure for 90 minutes</td>
<td>PH 90</td>
</tr>
<tr>
<td>Flame exposure for 120 minutes</td>
<td>PH 120</td>
</tr>
</tbody>
</table>

EN 50200 annex E also foresees the water stress (fire, mechanical shock & water spray), as previously provided by BS 8434-1 standard. EN 50200 is similar to IEC 60331-2. Being different from BS 6387, EN 50200 test the same samples simultaneously stressed by the flame action, by the mechanical shock and by water spray.

Circuit (insulation) integrity in accordance with EN 50362:2003

Circuit (insulation) Integrity in accordance with BS 5839-1:2002

The new edition of BS 5839-1:2002 (Fire detection and fire alarm systems for buildings. Code of practice for system design, installation, commissioning and maintenance) describes two levels of fire performance for fire-rated cabling for fire alarm systems: Standard Grade and Enhanced Grade. In order to confirm the compliance of the cable to both categories, BS 5839-1 refers to EN 50200 and BS 8434-2003 Part 1 & 2. (Method of tests for the assessment of fire integrity of electricity cables). These tests are carried out to verify the circuit integrity of small cables exposed to flame, mechanical shock and water in accordance with the new fire alarm code of practice.

Standard Grade clause 26.2d
Maintenance of circuit integrity:
BS 8434-1:2003 at 830°C for 30 minutes,
15 minutes with fire and mechanical shock plus
15 minutes with fire, mechanical shock and water.
BS EN 50200 PH30
30 minutes at 830°C with fire and mechanical shock

Enhanced Standard Grade clause 26.2e
Maintenance of circuit integrity:
BS 8434-2:2003 at 930°C for 120 minutes,
60 minutes with fire and mechanical shock plus
60 minutes with fire, mechanical shock and water.
BS EN 50200 PH120 (improved)
120 minutes at 830°C with fire and mechanical shock

BS 8434- Methods of test for assessment of the fire integrity of electric cables Part1: Test for unprotected small cables for use in emergency circuits - BS EN 50200 with the addition of water spray. Part 2: Test for unprotected small cables for use in emergency circuits- BS EN 50200 with a 930°C flame and with water spray.

BS 8434-1:2003 defines test which is equivalent to BS EN 50200 with a 830°C flame and water spray. The cable is stressed by the flame at 830°C with mechanical shocks for 15 minutes and further 15 minutes with the addition of water spray. BS 8434-2:2003 defines test which is equivalent to BS EN 50200 with a 930°C flame and water spray. The cable is stressed by the flame at 930°C with mechanical shocks for 60 minutes and further 60 minutes with the addition of water spray. The tests for BS 8434-2 have not been covered in the BS EN 50200 standard yet and are still in force.

Circuit (insulation) Integrity in accordance with BS 8491:2008
BS8491:2008 Method for assessment of fire integrity of large diameter power cables for use as components for smoke and heat control systems and certain other active fire safety systems. This standard is related to cables included in BS 7346-6 and certain other active fire safety systems. It is applicable to cables of rated voltage not exceeding 600/1000V and overall diameter greater than 20mm. The test method in BS 8491-2008 includes subjecting the cable under test to radiation via direct impingement corresponding to a constant temperature attack of 842°C, to direct mechanical impacts corresponding to a force of approximately 10N and to direct application of a water jet simulating a water fire fighting jet. The test method given in this standard includes three different test durations to allow testing of cables intended for different applications.
Circuit (insulation) Integrity in accordance with DIN VDE 0472-814
DIN VDE 0472-814:1991 - Testing of cables, wires and flexible cords; continuance of insulation effect under fire conditions.

A test fire is applied horizontally from a distance of 60cm to a single suspended cable during a specified time. The test is passed when there was continuous circuit integrity and no extremely increased attenuation values during and after the test respectively. For instance FE 90 cables can endure at least 90 minutes, „FE“ stands for flame exposure. The fire test with circuit integrity shows how many minutes a mechanically unstressed connection at a flame exposure of minimum 750°C keeps minimum insulation efficiency (circuit integrity) in a dry environment. Similar standard is IEC 60331 (FE) and BS 6387 Cat C. This is a fire test for insulation integrity without any mechanical and water stress.

Circuit (insulation) Integrity in accordance with NBN C 30-004 (cat. F3)
NBN C 30 004 – Fire Resistance of electric cables. Classification and test method. The cable is stressed by the flame at 900°C with mechanical shocks every 30 seconds for a duration of 3 hours. The cable is deemed to pass the test if the current leakage does not exceed 1 amp per conductor. The test must be passed by 4 successive samples.

Circuit (insulation) Integrity in accordance with SS299-1
SS299-1 Fire resistant cables - Performance requirements for cables required to maintain circuit integrity under fire conditions.

Circuit (insulation) Integrity in accordance with CEI 20-36/2-1
CEI 20-36/2-1 Tests for electric cables under fire conditions-Circuit integrity - Part 21: Procedures and requirements- Cables of rated voltage up to and including 0.6/1KV. This is equivalent to IEC 60331-21.

Circuit (insulation) Integrity in accordance with CEI 20-36/4-0
CEI 20-36/4-0 Method of test for fire resistance of small cables unprotected for use in emergency circuits. This is equivalent to CEI EN 50200.

Circuit (insulation) Integrity in accordance with NF C32-070-2.3(CR1)
The cable is installed in a stainless steel conduit and heated to 920°C ± 20°C according to a specified time curve. A voltage of 500 V AC or 1,000 V AC respectively is applied to the cable. To simulate mechanical shock, a small hammer strikes the pipe at a frequency of 2 strikes / min.

SYSTEM CIRCUIT (FUNCTIONAL) INTEGRITY IN ACCORDANCE WITH DIFFERENT STANDARDS

System Circuit (functional) Integrity in accordance with DIN 4102-12
Maintaining the function of electrical cable during the fire, defined as the concept of cable system is characterized by the German DIN 4102, part 12. DIN 4101-12 is a testing for functional integrity of entire electrical cable systems together with fastener components and shall be considered as the most rigorous, but on the other hand, as most closely simulating the real fire conditions,
DIN 4102-12 defines the requirements and testing method for fire resistance of electric cable system required to maintain circuit integrity. The standard defines testing for the functionality of so-called cable set, which consists of a group set of power cables, telecommunications, data cables etc. to be fixed to the support structure consisting of channels, ladders, cable tray, items to hang, handles, etc. Cables attached to this structure are powered by their work voltage. Functional integrity will be tested for short-circuit of insulation or discontinuity of any wire core.

DIN 4102-12 is a realistic fire-chamber testing with minimum dimensions 2 x 3 x 2.5 m. (width/length/height). A complete cable installation is tested under realistic conditions. The effects of thermal expansion and mechanical load during a fire are taken into account. The temperature must follow the standard fire curve (ETK): At E 90, the system is tested for 90 minutes, with a flame temperatures reaching up to 1000°C during the test. The cable is installed in a furnace and mounted with cable trays and cable clips with guides. A voltage of 400 V AC is applied to the cable (or 110 V AC for telecommunications cables).

There are three categories of function maintenance as follows:
- E30 - cable system function maintenance in case of fire for 30 minutes
- E60 - cable system function maintenance in case of fire for 60 minutes
- E90 - cable system function maintenance in case of fire for 90 minutes

The numbers in each case designate the period of time for which the integrity of the power circuit must be maintained.

It is worth noting that duration of the cable operation under test is determined not only by design and selection of used cable materials, but also and often primarily, the construction and selection of supporting structure materials, which is subject to deformation in high temperatures, and these deformations in turn tighten the cables attached to the structure.

System Circuit (functional) Integrity in accordance with NBN 713 020

The test specifies fire performance of building materials and products. The cables are installed in 3 x 3 testing room. They are installed on cable trays and undergo the flame action up to 1000°C. The cables are then classified according to the maximum time for resistance to fire (denoted by Rf1, Rf 1/2, Rf2 in which the number represents the time duration).

FLAME RETARDANCE IN ACCORDANCE WITH DIFFERENT STANDARDS

The following standards specify a method for flame propagation test for single core cables. The single cable sample undergoes the flame action of a bunsen burner. The test only lasts few minutes.

The IEC 60332-1 standards are taken over as EN standards and transferred to national standards. Example: IEC 60332-1 becomes EN 60332-1 and introduced in Germany as DIN EN 60332-1.

Flame Retardance in accordance with EN 60332:2004

EN 60332:2004 Tests on electrical and optical cables under fire conditions. The standard applies to single insulated wires (cables) and requires a vertical flame test with a maximum flame climb of 450mm. The test lasts between 1 and 8 minutes, depending on the cable diameter.

This standard specifies a method of test for resistance to vertical flame propagation for a single insulated wire or cable. Part 1-1 specifies the test apparatus and Part 1-2 specifies the test procedure.

The cable sample is deemed to pass the test if the distance between the lower edge of the top support and the onset of charring is greater than 50mm. In addition, a failure shall be recorded if burning extends downward to a point greater than 540mm from the lower edge of the top support.

EN 60332-1-2:2004 specifies the use of 1kW premix flame and is for general use, except that the procedure may not be suitable for the testing of small insulated conductors or cables of less than 0.5mm sq cross section because the conductor melts before the test is completed, or for the testing of small optic fiber cables because the fiber will be broken before the test is completed. In this case, the procedure given by EN 60332-2-1/2 is recommended.

This test applies to small dimensions cables.

This standard specifies a method of test for resistance to vertical flame propagation for a single insulated wire or cable. Part 2-1 specifies the test apparatus and Part 2-2 specifies the test procedure.

Flame Retardance in accordance with NF C32-070-2.1(C2)
NF C32-070:2001 Insulated conductors and cables for installation - Classification tests on conductors and cables with regard to fire behavior.
NF C32-070 2.1 Procedure for 1 kW pre-mixed flame.

The NF F 32070 2.1 (Category C2) and IEC 60332-1-2 are very similar. The sole difference is the time during which the flame is applied.

Flame Retardance in accordance with EN 50265-1:1999 (replaced by EN 60332)
propagation for a single insulated conductor or cable. Part 2-1: Procedure
1kW pre-mixed flame (Replaced by EN 60332-1-2:2004).

fire conditions. Test for resistance to a vertical flame propagation for a
single insulated conductor or cable. Part 2-2: Procedure Diffusion flame
(Replaced by EN 60332-2-2:2004).

Flame Retardance in accordance with BS 4066 Part 1 & 2 (replaced
by EN 60332)
BS 4066-2:1980 (superseded) – Tests on electric cables under fire conditions. Method of test on a
single vertical insulated wire or cable.

This standard is no longer in force and is replaced by BS EN 50265-2-1 which was also superseded
by BS EN 60332-1:2009.

Flame Retardance in accordance with NBN C 30-004 (cat. F1)
NBN C 32-004 specifies a method of test for measuring the vertical flame propagation characteristics
of a single wire or cable. The cable specimen is deemed to have passed the test and categorized
as F1 if after burning has ceased, the charred or affected portion does not reach within 50mm of the
lower edge of the top clamp which is equivalent to 425mm above the point of flame application.

Flame Retardance in accordance with IEEE 383
In the IEEE 383 test, cables are supported by a one foot wide vertical rack eight feet high. The
cables are positioned in the centre six inches of the rack, spaced one-half diameter apart. The rack
is centered in an eight foot enclosure. A ten inch ribbon burner ignites the cable with a 21 kW (70000
BTU). The burner is positioned 2 feet above the floor and 9 to 12 inches of cables are exposed to
direct flames for 20 minutes. Cables on which flame extends above the top of the 8 foot rack fail the
test.

REDUCED FIRE PROPAGATION IN ACCORDANCE WITH DIFFERENT STANDARDS

These standards specify a method for fire propagation test for
vertically mounted bunched cables. These tests simulate the
chimney effect in vertical installation of bunch of cables. A certain
number of cable sections with a length of 3.5 m is fastened to a
vertical ladder in an adapted chamber. The amount of combustible
materials for cables and duration of flame application depends on
the category the cable has to meet.

Resistance of the wires bundle arranged vertically to the spread of
the flame should be such that after a certain time and stopping the
source of ignition, flame is extinguished by itself and the length of
charred fragments will not exceed 2.5 m in height measured above
the lower edge of the burner.
Reduced Fire Propagation in accordance with IEC 60332-3

This test is the most common one to verify the behaviour of a cables for the fire propagation. The cables are installed on a bunch of vertical ladder inside a metal cabinet and undergo the action of a ribbon flame at 750°C. The standard is subdivided in several parts that differ one from the other for the quantity of cable to be installed, the installation mode and the flame application time.

EN 60332-3-10:2009 / BS EN 60332-3-10:2009 / IEC 60332-3-10 ed1.1 / DIN EN 60332-3-10:2009 / VDE 0482-332-3-10:2010-08 – Common test methods for cables under fire conditions. Tests on electric and optical fiber cables under fire conditions - Part 3-10: Test for vertical flame spread of vertically mounted bunched wires or cables.

- Installation In one layer (front).
- Installation In two layers (front and rear).
- The quantity of the installed cable is equal to 7 litres/m of combustible materials for cables.
- The time of application of the flame is 40 minutes.

- Installation In one layer (front).
- The quantity of the installed cable is equal to 7 litres/m of combustible materials for cables.
- The time of application of the flame is 40 minutes.

- Installation In one layer (front).
- The quantity of the installed cable is equal to 3.5 litres/m of combustible materials for cables.
- The time of application of the flame is 40 minutes.

- Installation In one layer (front).
- The quantity of the installed cable is equal to 1.5 litres/m of combustible materials for cables.
materials for cables
-The time of application of the flame is 20 minutes

-Installation In one layer (front).
-The quantity of the installed cable is equal to 0.5 litres/m of combustible materials for cables
-The time of application of the flame is 20 minutes.

Summary of test condition:

<table>
<thead>
<tr>
<th>IEC</th>
<th>60332-3-21</th>
<th>60332-3-22</th>
<th>60332-3-23</th>
<th>60332-3-24</th>
<th>60332-3-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS EN 50266</td>
<td>50266-2-1</td>
<td>50266-2-2</td>
<td>50266-2-3</td>
<td>50266-2-4</td>
<td>50266-2-5</td>
</tr>
<tr>
<td>CEI</td>
<td>20-22/3-1</td>
<td>20-22/3-2</td>
<td>20-22/3-3</td>
<td>20-22/3-4</td>
<td>20-22/3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>AF/R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor cross-sections (mm²)</td>
<td>>35</td>
<td>>35</td>
<td>≤35</td>
<td>>35</td>
<td>≤35</td>
</tr>
<tr>
<td>NMV (litres per metre of cable)</td>
<td>7</td>
<td>7</td>
<td>3.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Minimum length of test pieces (m)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Standard ladder (500 mm wide): • number of layers • maximum width of test sample</td>
<td>1front+1rear 300mm</td>
<td>≥1front 300mm</td>
<td>1front 300mm</td>
<td>-</td>
<td>≥1front 300mm</td>
</tr>
<tr>
<td>Wide ladder (800 mm wide): • number of layers • maximum width of test sample</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1front 600mm</td>
<td>-</td>
</tr>
<tr>
<td>Positioning of test pieces</td>
<td>Spaced 0.5×Diameter cable (Max.20mm)</td>
<td>Touching</td>
<td>Spaced 0.5×Diameter cable (Max.20mm)</td>
<td>Touching</td>
<td>Spaced 0.5×Diameter cable (Max.20mm)</td>
</tr>
<tr>
<td>Number of burners</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ladder mounting</td>
<td>Front and rear</td>
<td>Front, Wider ladder for larger cables</td>
<td>Front</td>
<td>Front</td>
<td>Front</td>
</tr>
<tr>
<td>Flame application time (min)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Test conditions</td>
<td>Wind speed: <8 m/s; Temperature: 5°C - +40°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent of the charred portion</td>
<td>≤2.5m above the bottom edge of the burner, neither at the front nor at the rear of the ladder.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reduced fire propagation in accordance with NF C32-070-2.2(C1)

NF C32-070 :2001 Insulated conductors and cables for installation.
-Classification tests on conductors and cables with regard to fire behavior.

A 1600mm vertically installed bundled of cable is exposed to the effects of a radiating oven (approx 830°C) and forced ventilation. Pilot flames arranged above the oven burn off the emitted gases. The test duration is 30 minutes, with the ventilation stopped for every 10 minutes during the flame application period. The cable sample is classified under Category C1 according to NF F 32070-2.2 if the carbonised part of the cable sample does not extend more than 0.8m above the upper base of the oven.

Depending on the damaged length, they can be further classified into 4 classes A, B, C and D according to NF F 16-101 as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No damaged length from top of the oven in upper position.</td>
</tr>
<tr>
<td>B</td>
<td>Damaged length from top of oven in upper position not extending more than 50mm.</td>
</tr>
<tr>
<td>C</td>
<td>Damaged length from top of oven in upper position not extending more than 300mm</td>
</tr>
<tr>
<td>D</td>
<td>Damaged length from top of oven in upper position not extending above the top of the chimney</td>
</tr>
</tbody>
</table>

Reduced Fire Propagation in accordance to EN 50266-1, EN 50266-2-2, EN 50266-2-3, EN 50266-2-4.

Reduced Fire Propagation in accordance with BS 4066-3
BS 4066-3:1994 (superseded) – Tests on electric cables under fire conditions. Tests on bunched wires or cables.
This standard is no longer in force and is replaced by the BS EN 50266-1:2001

Reduced Fire Propagation in accordance with NBN C 32-004 (F2)
NBN C 32-004 specifies a method of test for measuring the vertical flame propagation characteristics of a bunch of cables. The cable specimen is deemed to have passed the test and categorized as F2 if after burning has ceased, the extent of charred or affected portion does not reach a height exceeding 2.5m above the bottom edge of the burner.

HALOGEN CONTENT TEST IN ACCORDANCE WITH DIFFERENT STANDARDS

In the event of a fire, many fumes are produced. This test is concerned with the possibilities of corrosive acid gases being released from halogen containing cables and the damage such cables can cause (to equipments). These standards specify a method for determination of the amount of halogen acid gas, evolved during combustion of compound.

Halogen Content Test in accordance with EN 50267-2-1

This part of the standard defines the method to measure the amount of halogen acid evolved and which should be expressed in hydrochloric acid. The amount of halogen acid contained in the test solution is determined by a titration method.

If the cables are described as zero halogen or halogen free, it is recommended that the hydrochoric acid yield should be less than 0.5%.

Halogen Content Test in accordance with IEC 60754-1
Basically, this is same as EN 50267-2-1.

Halogen Content Test in accordance with BS 6425-1
BS 6425-1:1990(superseded): Test on gases evolved during the combustion of materials from cables. Method for determination of amount of halogen acid gas evolved during combustion of polmeric materials taken from cables.
This standard is no longer in force and is replaced by the EN 50267-2-1.

ACID GAS EMISSION TEST IN ACCORDANCE WITH DIFFERENT STANDARDS

The following standards specify a method for determination of acidity of gas evolved during
combustion of cables by measuring PH and conductivity. This test allows to determine the corrosivity of the acid gases generally halogens, that develop during the electric cable combustion.

Acid Gas Emission Test in accordance with EN 50267-2-2
The standard states that the pH and the conductivity of a test solution should be measured, using calibrated PH and conductivity meters.

If the cables are described as zero halogen or halogen free, it is recommended that at least both of the following requirements should be met for each of the individual materials of a cable:

- The PH value should not be less than 4.3 when related to 1 litre of water
- The conductivity should not be less than 10us/mm when related to 1 litre of water

Acid Gas Emission Test in accordance with IEC 60754-2
IEC 60754-2 ed1.0 Test on gases evolved during combustion of electric cables - Part 2 : Determination of degree of acidity of gases evolved during combustion of materials taken from electric cables by measuring pH and conductivity.

Acid Gas Emission Test in accordance with NF C32-074
NF C32-074 Common test methods for cables under fire conditions - Test on gases evolved during combustion of materials from cables. This standard is equivalent to IEC 60754-2

Acid Gas Emission Test in accordance with BS 6425-2
BS 6425-2:1993 (superseded) Test on gases evolved during the combustion of materials from cables. Determination of degree of acidity (corrosivity) of gases by measuring pH and conductivity.

This standard is no longer in force and is replaced by the EN 50267-2-2:1999.

Acid Gas Emission Test in accordance with DIN VDE 0472-813 / VDE 0472-813:1994
The standards are no longer in force and are replaced by the EN 50267-2-2 & VDE 0482-267-2-2.

SMOKE DENSITY TEST IN ACCORDANCE WITH DIFFERENT STANDARDS

The smoke density measurement taken from a material under fire conditions gives an indication of the visibility through the smoke. This is important as reduced visibility in a real fire situation makes it more difficult to escape from the fire thus increasing the threat to human life from the toxic gas, fumes and heat.

The following standards specify the method for measuring the generation of smoke from cables during fire.

Smoke Density Test in accordance with IEC 61034-1 & IEC 61034-2

The standard specifies a method of measurement of smoke density of cables. Part 1 specifies the test apparatus and Part 2 specifies the test procedure.

The test is usually performed inside a chamber of 3m x 3m x 3m and the test is sometimes described as 3 metre cube test. The test is performed by monitoring the transmittance reduction of a white light beam, running from one side of the chamber to the other, at a set height, thus monitoring the build up of smoke inside the chamber. The minimum percentage of light transmittance is often used to determine if the cable has passed or failed the test, often a minimum light transmittance of 60% is applied in order to classify a cable as low smoke.

Smoke Density Test in accordance with NF C32-073
NF C32 073 Common test methods for cables under fire conditions.
- Measurement of smoke density of cables burning under defined conditions.
This standard is equivalent to IEC 61034-2

Smoke Density Test in accordance with BS 7622-1 & BS 7622-2
BS 7622-1:1993 (superseded) – Measurement of smoke density of electric cables burning under defined conditions. Test apparatus.
BS 7622-2:1993 (superseded) – Measurement of smoke density of electric cables burning under defined conditions. Test procedure and requirements.

The standards are no longer in force and were replaced by the EN 50268-1:2000 and EN 50268-2:2000 even though they too were superseded by EN 61034-1:2005 and EN 61034-2:2005.
Smoke Density Test in accordance with EN 50268-1 & EN 50268-2
(superseded) – Common test methods for cables under fire conditions. Measurement of smoke
density of cable burning under defined conditions. Part 1: Apparatus
(superseded) – Common test methods for cables under fire conditions. Measurement of smoke
density of cable burning under defined conditions. Part 2: Procedure.
The standards are no longer in force and are replaced by the EN 61034-1:2005 and EN
61034-2:2005. Although these standards have been withdrawn, they are still called upon in some
specification documents such as in the London Underground specification 1-085.

Smoke Density Test In Accordance with DIN VDE 0472-816 / VDE 0472-816:1994
The standards are no longer in force and are replaced by the EN 50268-1, VDE 0482-268-1, EN
50268-2 & VDE 0482-268-2 which are also replaced by the EN 61034-1:2005 and EN 61034-2:2005.

OXYGEN INDEX TEST IN ACCORDANCE WITH DIFFERENT STANDARDS

The oxygen index is defined as the minimum concentration
of oxygen, expressed as volume percentage, in a mixture
of oxygen and nitrogen that will just support combustion of
a material initially at room temperature under specified test
conditions.

Oxygen Index Test in accordance with ASTM D 2863
ASTM D 2863-10 Measuring the minimum oxygen concentration
to support candle-like combustion of plastics (Oxygen Index).
The test is performed in accordance with the procedure specified in ASTM 2863-95 using test piece
cut from the outer sheath of the cable. The apparatus holds a small specimen which is clamped
vertically in a tube in an atmosphere where the relative concentration of oxygen and nitrogen can
be changed. The aim is to test the flammability of the sample with a small pilot flame to find the
minimum oxygen concentration required to just sustain combustion of the sample.

Oxygen Index Test in accordance with ISO 4589-2
ISO4589-2:1996 Determination of burning behaviour by oxygen index Part 2: Ambient temperature
test.
Specimens measuring 100mm long by 6mm wide are used for testing. The test is performed in
accordance with the procedure specified in the standard.

TEMPERATURE INDEX TEST IN ACCORDANCE WITH DIFFERENT STANDARDS

This is a test for assessing the performance of a material
when it is tested in accordance with BS2782: Part 1: Method
143a and 143b. The oxygen index of a material will drop
when the temperature rises. When the temperature rises
and the oxygen index drops to 21%, the material will burn
automatically. This temperature is defined as temperature index. For example, the oxygen index of the coal at room temperature is 50% and when the temperature climbs to 150°C, its oxygen index drops to 21°C and the coal will burn by itself automatically. The temperature index of the coal is defined as 150°C. In general, the temperature index of fire retardant cable exceeds 250°C.

Temperature Index Test in accordance with BS 2782

Specimens measuring nominally 100mm long by 6.5mm wide by 3mm thick are used for testing. The specimens are then tested in accordance with the test procedure specified in the standard.

Temperature Index Test in accordance with ISO 4589-3

Specimens measuring 100mm long by 6mm wide are used for testing. The test is performed in accordance with the procedure specified in the standard.

TOXICITY TEST IN ACCORDANCE WITH DIFFERENT STANDARDS

Toxicity test in accordance with NES 02-713

Measuring a fume from a material exposed to a controlled fire conditions gives an indication of the fumes which may be produced in a real fire situation. A standard method of test for determining the toxicity of materials under fire conditions is Defense Standard NES 02-713- Toxicity. This method gives the level of toxicity of the fumes produced from the material under test. During the test, the test specimen is heated via direct flame application at 1150°C.

The flame is applied via a bunsen burner with a flame height of between 100m and 125mm formed with a methane gas and an external supply of compressed air. The specimen toxicity is determined from accurate pre-analysis weight (4pp) colorimetric tubes and ion chromatography.

The test may determine the following species: Hydrogen Bromide, Hydrochloric Acid, Hydrogen Fluoride, Formaldehyde, Nitrous gases, Carbon Monoxide, Carbon Dioxide, Acrylonitrile, Phenol, Hydrogen Sulphide, Sulphur Dioxide, Hydrocyanic Acid, Ammonia. The concentration in ppm for each gas detected are provided. The toxicity index of the specimens summates the toxic gases, taking into account of their level of danger to humans. The smaller the toxicity index, the better the product. A limit of 5 is often applicable.

Toxicity test in accordance with NF C 20-454

The test defined by this standard serves to define the conventional toxicity index (cti) of the gases emitted by the insulating or sleeving materials during combustion at 800°C.
Toxicity test in accordance with NF X 70-100
NF X 70-100 Fire Tests; Analysis of gaseous effluents.

The test is conducted within a tube furnace where the temperature is set at either 400°C, 600°C, 800°C (commonly 600°C is used for most of the materials or 800°C for some electrical products) for 40 minutes throughout the test by analysis of the toxicity index of the gases including CO, CO₂, HCL, HBr, HCN, HF and SO₂.
Fire Resistant RG59 B/U Coaxial Cables

RG59 B/U FR

APPLICATION

The cables are designed for CCTV, security, smoke detection and evacuation monitoring applications, where continued functionality is required during a fire situation. Due to the zero halogen low smoke construction, this cable is ideal for use in public, commercial and industrial environments.

STANDARDS

Basic design to MIL-C-17

FIRE PERFORMANCE

<table>
<thead>
<tr>
<th>Category</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Integrity</td>
<td>IEC 60331-23; BS 6387 CWZ; DIN VDE 0472-814(FE180); CEI 20-36/2-1; SS299-1; NBN C 30-004 (cat. F3); NF C32-070-2.3(CR1)</td>
</tr>
<tr>
<td>System Circuit Integrity</td>
<td>DIN 4102-12, E30 depending on lay system</td>
</tr>
<tr>
<td>Flame Retardance (Single Vertical Wire Test)</td>
<td>EN 60332-1-2; IEC 60332-1-2; BS EN 60332-1-2; VDE 0482-332-1; NBN C 30-004 (cat. F1); NF C32-070-2.1(C2); CEI 20-35/1-2; EN 50265-2-1*; DIN VDE 0482-265-2-1*</td>
</tr>
<tr>
<td>Reduced Fire Propagation (Vertically-mounted bundled wires & cable test)</td>
<td>EN 60332-3-24 (cat. C); IEC 60332-3-24; BS EN 60332-3-24; VDE 0482-332-3; NBN C 30-004 (cat. F2); NF C32-070-2.2(C1); CEI 20-22/3-4; EN 50266-2-4*; DIN VDE 0482-266-2-4</td>
</tr>
<tr>
<td>Halogen Free</td>
<td>IEC 60754-1; EN 50267-2-1; DIN VDE 0482-267-2-1; CEI 20-37/2-1 ; BS 6425-1*</td>
</tr>
<tr>
<td>No Corrosive Gas Emission</td>
<td>IEC 60754-2; EN 50267-2-2; DIN VDE 0482-267-2-2; CEI 20-37/2-2 ; BS 6425-2*</td>
</tr>
<tr>
<td>Minimum Smoke Emission</td>
<td>IEC 61034-1&2; EN 61034-1&2; DIN VDE 0482-1034-1&2; CEI 20-37/3-1&2; EN 50268-1&2*; BS 7622-1&2*</td>
</tr>
<tr>
<td>No Toxic gases</td>
<td>NES 02-713; NF C 20-454</td>
</tr>
</tbody>
</table>

Note: Asterisk * denotes superseded standard.
CABLE CONSTRUCTION

Conductors: Copper clad steel, solid according to IEC 60228 class 1.
Insulation: PE wrapped with fire resistant silicone rubber compound type EI2 as per BS 7655-1.1 or fluoropolymer(FEP) compound.
Binder: Glass tape
Overall Screen: Plain copper wire braid
Outer Sheath: Thermoplastic LSZH compound type LTS3 as per BS 7655-6.1(Thermosetting LSZH compound type SW2-SW4 as per BS 7655-2.6 can be offered.). UV resistance, hydrocarbon resistance, oil resistance, anti rodent and anti termite properties can be offered as option.

PHYSICAL AND THERMAL PROPERTIES

Temperature range during operation (fixed state): -30°C - +70°C
Temperature range during installation (mobile state): -5°C - +60°C
Minimum bending radius: 8 x Overall Diameter

ELECTRICAL PROPERTIES

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>75±5Ω</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>67 nF/km</td>
<td></td>
</tr>
<tr>
<td>Velocity ratio</td>
<td>66%</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>>2000 Mohm.Km</td>
<td></td>
</tr>
<tr>
<td>Shield coverage</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>DC resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner conductor</td>
<td>158 Ω/km</td>
<td></td>
</tr>
<tr>
<td>Outer conductor</td>
<td>9.0 Ω/km</td>
<td></td>
</tr>
</tbody>
</table>

ATTENUATION

<table>
<thead>
<tr>
<th>Frequency(MHz)</th>
<th>Attenuation (dB/100 m)</th>
<th>Attenuation (dB/100ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>7.4</td>
<td>2.26</td>
</tr>
<tr>
<td>100</td>
<td>10.7</td>
<td>3.26</td>
</tr>
<tr>
<td>200</td>
<td>15.7</td>
<td>4.79</td>
</tr>
<tr>
<td>400</td>
<td>22.7</td>
<td>6.92</td>
</tr>
<tr>
<td>500</td>
<td>25.7</td>
<td>7.84</td>
</tr>
<tr>
<td>600</td>
<td>28.7</td>
<td>8.75</td>
</tr>
<tr>
<td>860</td>
<td>34.8</td>
<td>10.61</td>
</tr>
<tr>
<td>1000</td>
<td>38.0</td>
<td>11.59</td>
</tr>
</tbody>
</table>
RETURN LOSS

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-300 MHz</td>
<td>>31dB</td>
</tr>
<tr>
<td>300-600 MHz</td>
<td>>28dB</td>
</tr>
<tr>
<td>600-900 MHz</td>
<td>>24dB</td>
</tr>
</tbody>
</table>

CONSTRUCTION PARAMETERS

<table>
<thead>
<tr>
<th>Cable Code</th>
<th>Conductor Diameter</th>
<th>Nominal Insulation Diameter</th>
<th>Nominal Screen No.x Diameter</th>
<th>Nominal Overall Diameter</th>
<th>Approx. Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>No. x mm</td>
<td>mm</td>
<td>kg/km</td>
</tr>
<tr>
<td>RG59 B/U FR</td>
<td>0.58 ± 0.03</td>
<td>3.70 ± 0.10 m</td>
<td>120 x 0.15</td>
<td>6.20 ± 0.10</td>
<td>60.3</td>
</tr>
</tbody>
</table>

- **Rated Voltage**: 300/500V
- **Standard**: MIL-C-17
- **Circuit Integrity**: IEC 60331/BS 6387, NF C32-070-2.3(CR1)
- **Reduced Fire Propagation**: NF C32-070-2.2(C1), IEC60332-3-24/EN50266-2-4, IEC60332-1-2/EN50265-2-1
- **Flame Retardancy**: NF C32-070-2.1(C2)
- **Zero Halogen Free**: DIN 4102-12
- **Low Toxicity**: NES 02-713/NF C 20-454
- **Low Corrosivity**: IEC60354-2, EN50267-2-2/3, NF C 32-074
- **Low Smoke Emission**: IEC 61034-1&2, EN 50268-1&2/NF C32-073
- **Halogen Free**: IEC60754-1, EN50267-2-1
- **Functional Integrity**: DIN 4102-12
Fire Resistant RG6 A/U Coaxial Cables

RG6 A/U FR

APPLICATION
The cables are designed for CCTV, security, smoke detection and evacuation monitoring applications, where continued functionality is required during a fire situation. Due to the zero halogen low smoke construction, this cable is ideal for use in public, commercial and industrial environments.

STANDARDS
Basic design to MIL-C-17

FIRE PERFORMANCE

<table>
<thead>
<tr>
<th>Feature</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Integrity</td>
<td>IEC 60331-23; BS 6387 CWZ; DIN VDE 0472-814(FE180); CEI 20-36/2-1; SS299-1; NBN C 30-004 (cat. F3); NF C32-070-2.3(CR1)</td>
</tr>
<tr>
<td>System Circuit Integrity</td>
<td>DIN 4102-12, E30 depending on lay system</td>
</tr>
<tr>
<td>Flame Retardance (Single Vertical Wire Test)</td>
<td>EN 60332-1-2; IEC 60332-1-2; BS EN 60332-1-2; VDE 0482-332-1 ; NBN C 30-004 (cat. F1); NF C32-070-2.1(C2); CEI 20-35/1-2; EN 50265-2-1*; DIN VDE 0482-265-2-1*</td>
</tr>
<tr>
<td>Reduced Fire Propagation (Vertically-mounted bundled wires & cable test)</td>
<td>EN 60332-3-24 (cat. C); IEC 60332-3-24; BS EN 60332-3-24; VDE 0482-332-3; NBN C 30-004 (cat. F2); NF C32-070-2.2(C1); CEI 20-22/3-4; EN 50266-2-4*; DIN VDE 0482-266-2-4</td>
</tr>
<tr>
<td>Halogen Free</td>
<td>IEC 60754-1; EN 50267-2-1; DIN VDE 0482-267-2-1; CEI 20-37/2-1 ; BS 6425-1*</td>
</tr>
<tr>
<td>No Corrosive Gas Emission</td>
<td>IEC 60754-2; EN 50267-2-2; DIN VDE 0482-267-2-2; CEI 20-37/2-2 ; BS 6425-2*</td>
</tr>
<tr>
<td>Minimum Smoke Emission</td>
<td>IEC 61034-1&2; EN 61034 -1&2; DIN VDE 0482-1034-1&2; CEI 20-37/3-1&2; EN 50268-1&2*; BS 7622-1&2*</td>
</tr>
<tr>
<td>No Toxic gases</td>
<td>NES 02-713; NF C 20-454</td>
</tr>
</tbody>
</table>

*Note: Asterisk * denotes superseded standard.*
CABLE CONSTRUCTION

Conductors: Bare copper copper wire, solid according to IEC 60228 class 1.
Insulation: Foamed PE wrapped with fire resistant silicone rubber compound type EI2 as per BS 7655-1.1 or fluoropolymer(FEP) compound.
Binder: Glass tape
Overall Screen: AL foil(100%)+AL braid (70%)
Outer Sheath: Thermoplastic LSZH compound type LTS3 as per BS 7655-6.1 (Thermosetting LSZH compound type SW2-SW4 as per BS 7655-2.6 can be offered.). UV resistance, hydrocarbon resistance, oil resistance, anti rodent and anti termite properties can be offered as option.

PHYSICAL AND THERMAL PROPERTIES

Temperature range during operation (fixed state): -30°C - +70°C
Temperature range during installation (mobile state): -5°C - +60°C
Minimum bending radius: 8 x Overall Diameter

ELECTRICAL PROPERTIES

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>75±5Ω</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>54 nF/km</td>
<td></td>
</tr>
<tr>
<td>Velocity ratio(%)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>>5000 Mohm.Km</td>
<td></td>
</tr>
<tr>
<td>Shield coverage</td>
<td>AL foil(100%)+AL 70%</td>
<td></td>
</tr>
<tr>
<td>DC resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner conductor</td>
<td>23.1 Ω/km</td>
<td></td>
</tr>
<tr>
<td>Outer conductor</td>
<td>31 Ω/km</td>
<td></td>
</tr>
</tbody>
</table>

ATTENUATION

<table>
<thead>
<tr>
<th>Frequency(MHz)</th>
<th>Attenuation (dB/100 m)</th>
<th>Attenuation (dB/100ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5.0</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>6.4</td>
<td>1.96</td>
</tr>
<tr>
<td>200</td>
<td>9.2</td>
<td>2.8</td>
</tr>
<tr>
<td>500</td>
<td>14.5</td>
<td>4.4</td>
</tr>
<tr>
<td>600</td>
<td>15.9</td>
<td>4.9</td>
</tr>
<tr>
<td>800</td>
<td>17.7</td>
<td>5.4</td>
</tr>
<tr>
<td>1000</td>
<td>21.9</td>
<td>6.7</td>
</tr>
<tr>
<td>1350</td>
<td>24.9</td>
<td>7.6</td>
</tr>
<tr>
<td>1750</td>
<td>29.0</td>
<td>8.8</td>
</tr>
<tr>
<td>2050</td>
<td>33.1</td>
<td>10.1</td>
</tr>
<tr>
<td>2400</td>
<td>36.4</td>
<td>11.1</td>
</tr>
</tbody>
</table>
RETURN LOSS

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-300</td>
<td>>28dB</td>
</tr>
<tr>
<td>300-600</td>
<td>>24dB</td>
</tr>
<tr>
<td>600-900</td>
<td>>22dB</td>
</tr>
</tbody>
</table>

CONSTRUCTION PARAMETERS

<table>
<thead>
<tr>
<th>Cable Code</th>
<th>Conductor Diameter</th>
<th>Nominal Insulation Diameter</th>
<th>Nominal Screen No. x Diameter</th>
<th>Nominal Overall Diameter</th>
<th>Approx. Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG6 A/U FR</td>
<td>1.02</td>
<td>4.57 ± 0.20</td>
<td>96 x 0.12</td>
<td>7.00 ± 0.20</td>
<td>81.6</td>
</tr>
</tbody>
</table>

- **Rated Voltage**: 300/500V
- **Standard**: MIL-C-17
- **Circuit Integrity**: IEC 60331/BS 6387, NF C32-070-2.3(CR1)
- **Reduced Fire Propagation**: NF C32-070-2.2(C1) IEC60332-3-24/EN50266-2-4
- **Flame Retardancy**: NF C32-070-2.1(C2) IEC60332-1-2/EN50265-2-1
- **Zero Halogen Free**: IEC60754-1 EN50267-2-1
- **Low Smoke Emission**: IEC 61034-1&2 EN 50268-1&2/NF C32-073
- **Functional Integrity**: DIN 4102-12
Fire Resistant RG6 QUAD Coaxial Cables

RG6 QUAD FR

APPLICATION
The cables are designed for CCTV, security, smoke detection and evacuation monitoring applications, where continued functionality is required during a fire situation. Due to the zero halogen low smoke construction, this cable is ideal for use in public, commercial and industrial environments.

STANDARDS
Basic design to MIL-C-17

FIRE PERFORMANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Integrity</td>
<td>IEC 60331-23; BS 6387 CWZ; DIN VDE 0472-814(FE180); CEI 20-36/2-1; SS299-1; NBN C 30-004 (cat. F3); NF C32-070-2.3(CR1)</td>
</tr>
<tr>
<td>System Circuit Integrity</td>
<td>DIN 4102-12, E30 depending on lay system</td>
</tr>
<tr>
<td>Flame Retardance (Single Vertical Wire Test)</td>
<td>EN 60332-1-2; IEC 60332-1-2; BS EN 60332-1-2; VDE 0482-332-1; NBN C 30-004 (cat. F1); NF C32-070-2.1(C2); CEI 20-35/1-2; EN 50265-2-1*; DIN VDE 0482-265-2-1*</td>
</tr>
<tr>
<td>Reduced Fire Propagation (Vertically-mounted bundled wires & cable test)</td>
<td>EN 60332-3-24 (cat. C); IEC 60332-3-24; BS EN 60332-3-24; VDE 0482-332-3; NBN C 30-004 (cat. F2); NF C32-070-2.2(C1); CEI 20-22/3-4; EN 50266-2-4*; DIN VDE 0482-266-2-4</td>
</tr>
<tr>
<td>Halogen Free</td>
<td>IEC 60754-1; EN 50267-2-1; DIN VDE 0482-267-2-1; CEI 20-37/2-1 ; BS 6425-1*</td>
</tr>
<tr>
<td>No Corrosive Gas Emission</td>
<td>IEC 60754-2; EN 50267-2-2; DIN VDE 0482-267-2-2; CEI 20-37/2-2 ; BS 6425-2*</td>
</tr>
<tr>
<td>Minimum Smoke Emission</td>
<td>IEC 61034-1&2; EN 61034 -1&2; DIN VDE 0482-1034-1&2; CEI 20-37/3-1&2; EN 50268-1&2*; BS 7622-1&2*</td>
</tr>
<tr>
<td>No Toxic gases</td>
<td>NES 02-713; NF C 20-454</td>
</tr>
</tbody>
</table>

Note: Asterisk * denotes superseded standard.
CABLE CONSTRUCTION

Conductors: Copper clad steel, solid according to IEC 60228 class 1.
Insulation: Foamed PE wrapped with fire resistant silicone rubber compound type EI2 as per BS 7655-1.1 or fluoropolymer(FEP) compound.
Binder: Glass tape
Overall Screen:
 Screen1: Al-maylar Tape ≥25%
 Screen2: Aluminium Braid
 Screen3: Al-maylar Tape ≥25%
 Screen4: Aluminium Braid
Outer Sheath: Thermoplastic LSZH compound type LTS3 as per BS 7655-6.1 (Thermosetting LSZH compound type SW2-SW4 as per BS 7655-2.6 can be offered.). UV resistance, hydrocarbon resistance, oil resistance, anti rodent and anti termite properties can be offered as option.

PHYSICAL AND THERMAL PROPERTIES

Temperature range during operation (fixed state): -30°C - +70°C
Temperature range during installation (mobile state): -5°C - +60°C
Minimum bending radius: 8 x Overall Diameter

ELECTRICAL PROPERTIES

<table>
<thead>
<tr>
<th>Impedance</th>
<th>75±5Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>54 nF/km</td>
</tr>
<tr>
<td>Velocity ratio(%)</td>
<td>82</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>>5000 Mohm.Km</td>
</tr>
<tr>
<td>Shield coverage</td>
<td>≥60%</td>
</tr>
<tr>
<td>Max.conductor resistance</td>
<td>24.1 Ω/km</td>
</tr>
</tbody>
</table>

ATTENUATION

<table>
<thead>
<tr>
<th>Frequency(MHz)</th>
<th>Attenuation (dB/100 m)</th>
<th>Attenuation (dB/100ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.8</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>6.7</td>
<td>2.0</td>
</tr>
<tr>
<td>200</td>
<td>9.3</td>
<td>2.8</td>
</tr>
<tr>
<td>500</td>
<td>15.0</td>
<td>4.6</td>
</tr>
<tr>
<td>600</td>
<td>16.9</td>
<td>5.1</td>
</tr>
<tr>
<td>800</td>
<td>19.4</td>
<td>5.9</td>
</tr>
<tr>
<td>1000</td>
<td>21.6</td>
<td>6.6</td>
</tr>
<tr>
<td>1350</td>
<td>24.2</td>
<td>7.4</td>
</tr>
<tr>
<td>1750</td>
<td>28.0</td>
<td>8.4</td>
</tr>
</tbody>
</table>
CONSTRUCTION PARAMETERS

<table>
<thead>
<tr>
<th>Cable Code</th>
<th>Conductor Diameter</th>
<th>Nominal Insulation Diameter</th>
<th>Nominal Screen2 No.x Diameter</th>
<th>Nominal Screen4 No.x Diameter</th>
<th>Nominal Overall Diameter</th>
<th>Approx. Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG6 QUAD FR</td>
<td>1.02</td>
<td>4.60 ± 0.20</td>
<td>80 x 0.12</td>
<td>64 x 0.12</td>
<td>7.55 ± 0.20</td>
<td>92.4</td>
</tr>
</tbody>
</table>

- **Rated Voltage**: 300/500V
- **Standard**: MIL-C-17
- **Circuit Integrity**: IEC 60331/BS 6387 NF C32-070-2.3(CR1)
- **Reduced Fire Propagation**: NF C32-070-2.2(C1) IEC60332-3-24/EN50266-2-4 IEC60332-3-24/EN50266-2-4
- **Flame Retardancy**: NF C32-070-2.1(C2) IEC60332-1-2/EN50265-2-1
- **Zero Halogen Free**: IEC60754-1 EN50267-1-2/EN50265-2-1
- **Functional Integrity**: DIN 4102-12
- **Low Toxicity**: NES 02-713/NF C 20-484
- **Low Corrosivity**: IEC60754-2 EN50267-2-2/3 NF C 32-074
- **Low Smoke Emission**: IEC 61034-1&2 EN 50268-1&2/NF C32-073
- **Halogen Free**: IEC60754-1 EN50267-2-1

RETURN LOSS

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-300</td>
<td>>28dB</td>
</tr>
<tr>
<td>300-600</td>
<td>>24dB</td>
</tr>
<tr>
<td>600-900</td>
<td>>22dB</td>
</tr>
</tbody>
</table>
Fire Resistant RG11 A/U Coaxial Cables

RG11 A/U FR

APPLICATION

The cables are designed for CCTV, security, smoke detection and evacuation monitoring applications, where continued functionality is required during a fire situation. Due to the zero halogen low smoke construction, this cable is ideal for use in public, commercial and industrial environments.

STANDARDS

Basic design to MIL-C-17

FIRE PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>IEC 60331-23; BS 6387 CWZ; DIN VDE 0472-814(FE180); CEI 20-36/2-1; SS299-1; NBN C 30-004 (cat. F3); NF C32-070-2.3(CR1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Integrity</td>
<td>System Circuit Integrity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIN 4102-12, E30 depending on lay system</td>
<td></td>
</tr>
<tr>
<td>Flame Retardance</td>
<td>EN 60332-1-2; IEC 60332-1-2; BS EN 60332-1-2; VDE 0482-332-1; NBN C 30-004 (cat. F1); NF C32-070-2.1(C2); CEI 20-35/1-2; EN 50265-2-1*; DIN VDE 0482-265-2-1*</td>
<td></td>
</tr>
<tr>
<td>(Single Vertical Wire Test)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Fire Propagation</td>
<td>EN 60332-3-24 (cat. C); IEC 60332-3-24; BS EN 60332-3-24; VDE 0482-332-3; NBN C 30-004 (cat. F2); NF C32-070-2.2(C1); CEI 20-22/3-4; EN 50266-2-4*; DIN VDE 0482-266-2-4</td>
<td></td>
</tr>
<tr>
<td>Halogen Free</td>
<td>IEC 60754-1; EN 50267-2-1; DIN VDE 0482-267-2-1; CEI 20-37/2-1 ; BS 6425-1*</td>
<td></td>
</tr>
<tr>
<td>No Corrosive Gas Emission</td>
<td>IEC 60754-2; EN 50267-2-2; DIN VDE 0482-267-2-2; CEI 20-37/2-2 ; BS 6425-2*</td>
<td></td>
</tr>
<tr>
<td>Minimum Smoke Emission</td>
<td>IEC 61034-1&2; EN 61034 -1&2; DIN VDE 0482-1034-1&2; CEI 20-37/3-1&2; EN 50268-1&2*; BS 7622-1&2*</td>
<td></td>
</tr>
<tr>
<td>No Toxic gases</td>
<td>NES 02-713; NF C 20-454</td>
<td></td>
</tr>
</tbody>
</table>

Note: Asterisk * denotes superseded standard.
CABLE CONSTRUCTION

Conductors: Tinned copper copper wire, stranded according to IEC 60228 class 2.
Insulation: Low density PE wrapped with fire resistant silicone rubber compound type EI2 as per BS 7655-1.1 or fluoropolymer(FEP) compound.
Binder: Glass tape
Overall Screen: Plain copper wire braid
Outer Sheath: Thermoplastic LSZH compound type LTS3 as per BS 7655-6.1 (Thermosetting LSZH compound type SW2-SW4 as per BS 7655:section 2.6 can be offered.). UV resistance, hydrocarbon resistance, oil resistance, anti rodent and anti termite properties can be offered as option.

PHYSICAL AND THERMAL PROPERTIES

Temperature range during operation (fixed state): -30°C - +70°C
Temperature range during installation (mobile state): -5°C - +60°C
Minimum bending radius: 8 x Overall Diameter

ELECTRICAL PROPERTIES

<table>
<thead>
<tr>
<th>Impedance</th>
<th>75±5Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>67 nF/km</td>
</tr>
<tr>
<td>Velocity ratio(%)</td>
<td>66</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>>2000 Mohm.Km</td>
</tr>
<tr>
<td>Shield coverage</td>
<td>97%</td>
</tr>
<tr>
<td>DC resistance</td>
<td></td>
</tr>
<tr>
<td>Inner conductor</td>
<td>20.5 Ω/km</td>
</tr>
<tr>
<td>Outer conductor</td>
<td>4.5 Ω/km</td>
</tr>
</tbody>
</table>

ATTENUATION

<table>
<thead>
<tr>
<th>Frequency(MHz)</th>
<th>Attenuation (dB/100 m)</th>
<th>Attenuation (dB/100ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.2</td>
<td>1.28</td>
</tr>
<tr>
<td>100</td>
<td>6.2</td>
<td>1.89</td>
</tr>
<tr>
<td>200</td>
<td>9.3</td>
<td>2.84</td>
</tr>
<tr>
<td>400</td>
<td>13.8</td>
<td>4.21</td>
</tr>
<tr>
<td>500</td>
<td>15.5</td>
<td>4.73</td>
</tr>
<tr>
<td>600</td>
<td>17.1</td>
<td>5.21</td>
</tr>
<tr>
<td>860</td>
<td>20.1</td>
<td>6.13</td>
</tr>
<tr>
<td>1000</td>
<td>23.4</td>
<td>7.13</td>
</tr>
</tbody>
</table>
RETURN LOSS

<table>
<thead>
<tr>
<th>Frequency(MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-300 MHz</td>
<td>>30dB</td>
</tr>
<tr>
<td>300-600 MHz</td>
<td>>27dB</td>
</tr>
<tr>
<td>600-900 MHz</td>
<td>>25dB</td>
</tr>
</tbody>
</table>

CONSTRUCTION PARAMETERS

<table>
<thead>
<tr>
<th>Cable Code</th>
<th>Conductor Diameter</th>
<th>Nominal Insulation Diameter</th>
<th>Nominal Screen No.x Diameter</th>
<th>Nominal Overall Diameter</th>
<th>Approx. Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG11 A/U FR</td>
<td>7 x 0.40</td>
<td>7.25 ± 0.18</td>
<td>192 x 0.18</td>
<td>10.3 ± 0.18</td>
<td>150</td>
</tr>
</tbody>
</table>

Rated Voltage
300/500V

Circuit Integrity
IEC 60331/BS 6387
NF C32-070-2.3(CR1)

Reduced Fire Propagation
NF C32-070-2.2(C1)
IEC60332-3-24/EN50266-2-4
EC60332-1-2/EN50265-2-1

Flame Retardancy
NF C32-070-2.1(C2)

Zero Smoke Emission
IEC 61034-1&2
EN 50268-1&2/NF C32-073

Halogen Free
IEC60754-1
EN50267-2-1

Low Corrosivity
IEC60754-2
EN50267-2-23
NF C 32-074

Low Toxicity
NES 02-713/NF C 20-454

Low Smoke Emission
IEC 61034-1&2
EN 50268-1&2/NF C32-073

Functional Integrity
DIN 4102-12